• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema de equação, com seno e cosseno, como fazer?

Sistema de equação, com seno e cosseno, como fazer?

Mensagempor Therodrigou » Seg Mar 25, 2019 04:00

Olá, gostaria de pedir ajuda para resolver esse sistema:

1,375*sin(x) + sin(30)*y - 1,5 = 0
- 1,375*cos(x) + cos(30)*y = 0

Resposta:
y = 1,2
x = 40,9

Esse sistema tem solução, foi retirado de uma questão de física, apenas troquei as variáveis para facilitar, conforme a imagem:
https://image.slidesharecdn.com/chapter ... 1510090397
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Sistema de equação, com seno e cosseno, como fazer?

Mensagempor Gebe » Seg Mar 25, 2019 15:54

Vamos começar isolando sin(x) e cos(x) na 1ª e 2ª equação respectivamente:

\\
sin(x)~=~\frac{1,5-sin(30^\circ)y}{1,375}
\\
\\
\\
\boxed{sin(x)~=~\frac{1,5-0,5y}{1,375}}
\\
\\
\\
\\
cos(x)~=~\frac{-cos(30^\circ)y}{-1,375}
\\
\\
\\
\boxed{cos(x)~=~\frac{\sqrt{3}\,y}{2~.~1,375}}


Agora aplicando a identidade sin²x + cos²x = 1:


\\
sin^2x+cos^2x~=~1
\\
\\\\
\left(\frac{1,5-0,5y}{1,375}\right)^2~+~\left(\frac{\sqrt{3}\,y}{2~.~1,375}\right)^2~=~1
\\
\\
\\
\\
\frac{4~.~(0,25y^2-1,5y+2,25)~+~1~.~(3y^2)}{2^2~.~1,375^2}~=~1
\\
\\
\\
y^2-6y+9+3y^2~=~1~.~(2^2+1,375^2)
\\
\\
\\
4y^2-6y+9-7,5625~=~0
\\
\\
\\
4y^2-6y+1,4375~=~0
\\
\\\\
Aplicando~Bhaskara:
\\\\
\\
\Delta~=~(-6)^2-4.4.1,4375~=~13
\\
\\


\\
y'~=~\frac{6+\sqrt{13}}{2~.~4}~=~\frac{6+\sqrt{13}}{8}~\approx~1,20


\\
y'\,'~=~\frac{6-\sqrt{13}}{2~.~4}~=~\frac{6-\sqrt{13}}{8}~\approx~0,30


Substituindo os valores de "y" nas equações acharemos:


\\
Para~y~=~1,2:~~~sin(x)~=~\frac{36}{55}~~\rightarrow~~\boxed{x~=~40,9^\circ}
\\
\\\\
Para~y~=~0,30:~~~sin(x)~=~\frac{54}{55}~~\rightarrow~~\boxed{x~=~79,1^\circ}


Obs.: Não consegui identificar no problema se há alguma condição que recuse o par (x,y) = (79,1° , 0,30) como solução
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Sistema de equação, com seno e cosseno, como fazer?

Mensagempor Therodrigou » Seg Mar 25, 2019 18:40

Obrigado! O y seria o valor de uma força, apenas o x seria o ângulo!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.