• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema de equação, com seno e cosseno, como fazer?

Sistema de equação, com seno e cosseno, como fazer?

Mensagempor Therodrigou » Seg Mar 25, 2019 04:00

Olá, gostaria de pedir ajuda para resolver esse sistema:

1,375*sin(x) + sin(30)*y - 1,5 = 0
- 1,375*cos(x) + cos(30)*y = 0

Resposta:
y = 1,2
x = 40,9

Esse sistema tem solução, foi retirado de uma questão de física, apenas troquei as variáveis para facilitar, conforme a imagem:
https://image.slidesharecdn.com/chapter ... 1510090397
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Sistema de equação, com seno e cosseno, como fazer?

Mensagempor Gebe » Seg Mar 25, 2019 15:54

Vamos começar isolando sin(x) e cos(x) na 1ª e 2ª equação respectivamente:

\\
sin(x)~=~\frac{1,5-sin(30^\circ)y}{1,375}
\\
\\
\\
\boxed{sin(x)~=~\frac{1,5-0,5y}{1,375}}
\\
\\
\\
\\
cos(x)~=~\frac{-cos(30^\circ)y}{-1,375}
\\
\\
\\
\boxed{cos(x)~=~\frac{\sqrt{3}\,y}{2~.~1,375}}


Agora aplicando a identidade sin²x + cos²x = 1:


\\
sin^2x+cos^2x~=~1
\\
\\\\
\left(\frac{1,5-0,5y}{1,375}\right)^2~+~\left(\frac{\sqrt{3}\,y}{2~.~1,375}\right)^2~=~1
\\
\\
\\
\\
\frac{4~.~(0,25y^2-1,5y+2,25)~+~1~.~(3y^2)}{2^2~.~1,375^2}~=~1
\\
\\
\\
y^2-6y+9+3y^2~=~1~.~(2^2+1,375^2)
\\
\\
\\
4y^2-6y+9-7,5625~=~0
\\
\\
\\
4y^2-6y+1,4375~=~0
\\
\\\\
Aplicando~Bhaskara:
\\\\
\\
\Delta~=~(-6)^2-4.4.1,4375~=~13
\\
\\


\\
y'~=~\frac{6+\sqrt{13}}{2~.~4}~=~\frac{6+\sqrt{13}}{8}~\approx~1,20


\\
y'\,'~=~\frac{6-\sqrt{13}}{2~.~4}~=~\frac{6-\sqrt{13}}{8}~\approx~0,30


Substituindo os valores de "y" nas equações acharemos:


\\
Para~y~=~1,2:~~~sin(x)~=~\frac{36}{55}~~\rightarrow~~\boxed{x~=~40,9^\circ}
\\
\\\\
Para~y~=~0,30:~~~sin(x)~=~\frac{54}{55}~~\rightarrow~~\boxed{x~=~79,1^\circ}


Obs.: Não consegui identificar no problema se há alguma condição que recuse o par (x,y) = (79,1° , 0,30) como solução
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Sistema de equação, com seno e cosseno, como fazer?

Mensagempor Therodrigou » Seg Mar 25, 2019 18:40

Obrigado! O y seria o valor de uma força, apenas o x seria o ângulo!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59