• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema de equação, com seno e cosseno, como fazer?

Sistema de equação, com seno e cosseno, como fazer?

Mensagempor Therodrigou » Seg Mar 25, 2019 04:00

Olá, gostaria de pedir ajuda para resolver esse sistema:

1,375*sin(x) + sin(30)*y - 1,5 = 0
- 1,375*cos(x) + cos(30)*y = 0

Resposta:
y = 1,2
x = 40,9

Esse sistema tem solução, foi retirado de uma questão de física, apenas troquei as variáveis para facilitar, conforme a imagem:
https://image.slidesharecdn.com/chapter ... 1510090397
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Sistema de equação, com seno e cosseno, como fazer?

Mensagempor Gebe » Seg Mar 25, 2019 15:54

Vamos começar isolando sin(x) e cos(x) na 1ª e 2ª equação respectivamente:

\\
sin(x)~=~\frac{1,5-sin(30^\circ)y}{1,375}
\\
\\
\\
\boxed{sin(x)~=~\frac{1,5-0,5y}{1,375}}
\\
\\
\\
\\
cos(x)~=~\frac{-cos(30^\circ)y}{-1,375}
\\
\\
\\
\boxed{cos(x)~=~\frac{\sqrt{3}\,y}{2~.~1,375}}


Agora aplicando a identidade sin²x + cos²x = 1:


\\
sin^2x+cos^2x~=~1
\\
\\\\
\left(\frac{1,5-0,5y}{1,375}\right)^2~+~\left(\frac{\sqrt{3}\,y}{2~.~1,375}\right)^2~=~1
\\
\\
\\
\\
\frac{4~.~(0,25y^2-1,5y+2,25)~+~1~.~(3y^2)}{2^2~.~1,375^2}~=~1
\\
\\
\\
y^2-6y+9+3y^2~=~1~.~(2^2+1,375^2)
\\
\\
\\
4y^2-6y+9-7,5625~=~0
\\
\\
\\
4y^2-6y+1,4375~=~0
\\
\\\\
Aplicando~Bhaskara:
\\\\
\\
\Delta~=~(-6)^2-4.4.1,4375~=~13
\\
\\


\\
y'~=~\frac{6+\sqrt{13}}{2~.~4}~=~\frac{6+\sqrt{13}}{8}~\approx~1,20


\\
y'\,'~=~\frac{6-\sqrt{13}}{2~.~4}~=~\frac{6-\sqrt{13}}{8}~\approx~0,30


Substituindo os valores de "y" nas equações acharemos:


\\
Para~y~=~1,2:~~~sin(x)~=~\frac{36}{55}~~\rightarrow~~\boxed{x~=~40,9^\circ}
\\
\\\\
Para~y~=~0,30:~~~sin(x)~=~\frac{54}{55}~~\rightarrow~~\boxed{x~=~79,1^\circ}


Obs.: Não consegui identificar no problema se há alguma condição que recuse o par (x,y) = (79,1° , 0,30) como solução
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Sistema de equação, com seno e cosseno, como fazer?

Mensagempor Therodrigou » Seg Mar 25, 2019 18:40

Obrigado! O y seria o valor de uma força, apenas o x seria o ângulo!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: