• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com analise de sistemas não lineares

Ajuda com analise de sistemas não lineares

Mensagempor lgfi » Sex Mai 05, 2017 22:13

Boa noite pessoal, estou com uma dúvida num exercício de Sistemas Não Lineares.

Os sistemas lineares apresentam soluções conhecidas e existem diversos métodos para encontrá-las de forma exata. Em contrapartida, para os sistemas não lineares não existem métodos que resolvam todos os casos com exatidão. Analise os sistemas não-lineares apresentados abaixo.

Sistema I:

x²+y² = 5
x²-y²=3

Sistema II

x²+2y²+3z² = 0
x+3z+w=6

Sistema III

x²-2xy+y²=1
x-y=1

Qual alternativa descreve corretamente as soluções de tais sistemas?
A)O sistema II possui infinitas soluções.
B)O sistema I possui uma única solução.
C)As soluções do sistema III formam um espaço de dimensão 1.
D)O conjunto de soluções de cada um desses sistemas forma um espaço afim.
E)A interseção dos conjuntos de soluções dos sistemas I e III é vazia.

Se puderem me ajudar, agradeço !!
Obrigado
lgfi
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Mai 05, 2017 22:08
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.


cron