• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parametrizar a seuinte curva

Parametrizar a seuinte curva

Mensagempor T0LKIEN » Ter Mar 29, 2016 11:20

2x^2 + 2y^2 - 6x - 2y + 4 = 0
T0LKIEN
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mar 29, 2016 11:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: Parametrizar a seuinte curva

Mensagempor nakagumahissao » Sáb Mai 07, 2016 23:18

Primeiramente precisamos completar os quadrados para obtermos uma equação mais "simplificada", que neste caso é a de um círcunferência:

{2x}^{2} + {2y}^{2} - 6x - 2y + 4 = 0

Dividindo-se os dois lados desta equação por 2 teremos:

{x}^{2} + {y}^{2} - 3x - y + 2 = 0

Reordenando...

{x}^{2} - 3x + {y}^{2}  - y + 2 = 0

Completando-se os quadrados:

{x}^{2} - 3x + \square + {y}^{2}  - y + \square + 2 = 0

{\left(x - \frac{3}{2} \right)}^{2} + {\left(y - \frac{1}{2} \right)}^{2} + 2 - \frac{9}{4} - \frac{1}{4} = 0

Logo,

{\left(x - \frac{3}{2} \right)}^{2} + {\left(y - \frac{1}{2} \right)}^{2} - \frac{1}{2} = 0

{\left(x - \frac{3}{2} \right)}^{2} + {\left(y - \frac{1}{2} \right)}^{2} = \frac{1}{2} \;\;\;\;\;\;[1]

que se trata de uma circunferência com centro em (3/2, 1/2) e raio

r = \frac{\sqrt{2}}{2}

Se queremos parametrizar esta curva, podemos fazer, utilizando o centro (3/2, 1/2):

x = \frac{3}{2} +  \frac{\sqrt{2}}{2}\cos \theta \;\; e \;\; y = \frac{1}{2} +  \frac{\sqrt{2}}{2}\sin \theta

Que é a parametrização procurada.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59