• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema linear

Sistema linear

Mensagempor gabrielp18 » Qua Dez 16, 2015 17:22

Boa tarde galera! Enrosquei em um sisteminha...

Seja o sistema
x + y + z= 0
-x + (sen\theta)y + 2z =0 No enunciado essa equação veio sem igualdade, por isso considerei sendo =0
x + ({sen}^{2}\theta)y + 4z = 0

sendo \theta um número real no intervalo [0,2\pi].

a) Determine \theta para que o sistema tenha infinitas soluções
b) Para o valor de \theta encontrado no item a, resolva o sistema.
Resposta: a) 3\pi/2 b)S={(-\alpha, \alpha, 0), \forall\alpha}.

Eu cheguei em dois resultado para o sen: -2 e 3.

Obg!
Obs: me desculpem, mas não consegui colocar a fórmula no LaTeX, sempre dava algum erro...
gabrielp18
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 16, 2015 11:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sistema linear

Mensagempor DanielFerreira » Seg Fev 08, 2016 17:46

Talvez tenha sido dito no enunciado que o sistema é homogêneo!

Por Cramer, sabemos que a equação será indeterminada se \Delta = 0, uma vez que \Delta_x = \Delta_y = \Delta_z = 0 (sistema homogêneo).

Segue,

\\ \begin{vmatrix} 1 & 1 & 1 \\ - 1 & \sin \theta \, y & 2 \\ 1 & \sin^2 \theta \, y & 4 \end{vmatrix} = 0 \\\\ 4 \cdot \sin \theta  + 2 - \sin^2 \theta - \sin \theta - 2 \cdot \sin^2 \theta + 4 = 0 \\\\ 3 \cdot \sin^2 \theta - 3 \cdot \sin \theta - 6 = 0 \;\; \div (3 \\\\  \sin^2 \theta - \sin \theta - 2 = 0 \\\\ (\sin \theta - 2)(\sin \theta + 1) = 0 \\\\ \sin \theta = - 1 \\\\ \theta = \sin^{- 1} - 1 \\\\ \boxed{\theta = \frac{3\pi}{2}}

Obs.: não devemos considerar \sin \theta = 2 pois - 1 \leq \sin \theta \leq 1.

Concluímos o item b resolvendo o sistema \begin{cases} x + y + z = 0 \\ - x - y + 2z = 0 \\ x + y + 4z = 0 \end{cases}.

Somando as duas equações iniciais,

\\ 3z = 0 \\ \boxed{z = 0}.

Substituindo-o nas equações ficamos com o seguinte sistema: \begin{cases} x + y = 0 \\ - x - y = 0 \\ x + y = 0 \end{cases}. Como podemos notar, as três equação são proporcionais; com efeito,

\\ x + y = 0 \\ x = - y

Fazendo y = \alpha, concluímos que \boxed{\boxed{(x, y, z) = (- \alpha, \alpha, 0)}}!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?