• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema linear

Sistema linear

Mensagempor gabrielp18 » Qua Dez 16, 2015 17:22

Boa tarde galera! Enrosquei em um sisteminha...

Seja o sistema
x + y + z= 0
-x + (sen\theta)y + 2z =0 No enunciado essa equação veio sem igualdade, por isso considerei sendo =0
x + ({sen}^{2}\theta)y + 4z = 0

sendo \theta um número real no intervalo [0,2\pi].

a) Determine \theta para que o sistema tenha infinitas soluções
b) Para o valor de \theta encontrado no item a, resolva o sistema.
Resposta: a) 3\pi/2 b)S={(-\alpha, \alpha, 0), \forall\alpha}.

Eu cheguei em dois resultado para o sen: -2 e 3.

Obg!
Obs: me desculpem, mas não consegui colocar a fórmula no LaTeX, sempre dava algum erro...
gabrielp18
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 16, 2015 11:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sistema linear

Mensagempor DanielFerreira » Seg Fev 08, 2016 17:46

Talvez tenha sido dito no enunciado que o sistema é homogêneo!

Por Cramer, sabemos que a equação será indeterminada se \Delta = 0, uma vez que \Delta_x = \Delta_y = \Delta_z = 0 (sistema homogêneo).

Segue,

\\ \begin{vmatrix} 1 & 1 & 1 \\ - 1 & \sin \theta \, y & 2 \\ 1 & \sin^2 \theta \, y & 4 \end{vmatrix} = 0 \\\\ 4 \cdot \sin \theta  + 2 - \sin^2 \theta - \sin \theta - 2 \cdot \sin^2 \theta + 4 = 0 \\\\ 3 \cdot \sin^2 \theta - 3 \cdot \sin \theta - 6 = 0 \;\; \div (3 \\\\  \sin^2 \theta - \sin \theta - 2 = 0 \\\\ (\sin \theta - 2)(\sin \theta + 1) = 0 \\\\ \sin \theta = - 1 \\\\ \theta = \sin^{- 1} - 1 \\\\ \boxed{\theta = \frac{3\pi}{2}}

Obs.: não devemos considerar \sin \theta = 2 pois - 1 \leq \sin \theta \leq 1.

Concluímos o item b resolvendo o sistema \begin{cases} x + y + z = 0 \\ - x - y + 2z = 0 \\ x + y + 4z = 0 \end{cases}.

Somando as duas equações iniciais,

\\ 3z = 0 \\ \boxed{z = 0}.

Substituindo-o nas equações ficamos com o seguinte sistema: \begin{cases} x + y = 0 \\ - x - y = 0 \\ x + y = 0 \end{cases}. Como podemos notar, as três equação são proporcionais; com efeito,

\\ x + y = 0 \\ x = - y

Fazendo y = \alpha, concluímos que \boxed{\boxed{(x, y, z) = (- \alpha, \alpha, 0)}}!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1683
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.