• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema linear

Sistema linear

Mensagempor gabrielp18 » Qua Dez 16, 2015 17:22

Boa tarde galera! Enrosquei em um sisteminha...

Seja o sistema
x + y + z= 0
-x + (sen\theta)y + 2z =0 No enunciado essa equação veio sem igualdade, por isso considerei sendo =0
x + ({sen}^{2}\theta)y + 4z = 0

sendo \theta um número real no intervalo [0,2\pi].

a) Determine \theta para que o sistema tenha infinitas soluções
b) Para o valor de \theta encontrado no item a, resolva o sistema.
Resposta: a) 3\pi/2 b)S={(-\alpha, \alpha, 0), \forall\alpha}.

Eu cheguei em dois resultado para o sen: -2 e 3.

Obg!
Obs: me desculpem, mas não consegui colocar a fórmula no LaTeX, sempre dava algum erro...
gabrielp18
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 16, 2015 11:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sistema linear

Mensagempor DanielFerreira » Seg Fev 08, 2016 17:46

Talvez tenha sido dito no enunciado que o sistema é homogêneo!

Por Cramer, sabemos que a equação será indeterminada se \Delta = 0, uma vez que \Delta_x = \Delta_y = \Delta_z = 0 (sistema homogêneo).

Segue,

\\ \begin{vmatrix} 1 & 1 & 1 \\ - 1 & \sin \theta \, y & 2 \\ 1 & \sin^2 \theta \, y & 4 \end{vmatrix} = 0 \\\\ 4 \cdot \sin \theta  + 2 - \sin^2 \theta - \sin \theta - 2 \cdot \sin^2 \theta + 4 = 0 \\\\ 3 \cdot \sin^2 \theta - 3 \cdot \sin \theta - 6 = 0 \;\; \div (3 \\\\  \sin^2 \theta - \sin \theta - 2 = 0 \\\\ (\sin \theta - 2)(\sin \theta + 1) = 0 \\\\ \sin \theta = - 1 \\\\ \theta = \sin^{- 1} - 1 \\\\ \boxed{\theta = \frac{3\pi}{2}}

Obs.: não devemos considerar \sin \theta = 2 pois - 1 \leq \sin \theta \leq 1.

Concluímos o item b resolvendo o sistema \begin{cases} x + y + z = 0 \\ - x - y + 2z = 0 \\ x + y + 4z = 0 \end{cases}.

Somando as duas equações iniciais,

\\ 3z = 0 \\ \boxed{z = 0}.

Substituindo-o nas equações ficamos com o seguinte sistema: \begin{cases} x + y = 0 \\ - x - y = 0 \\ x + y = 0 \end{cases}. Como podemos notar, as três equação são proporcionais; com efeito,

\\ x + y = 0 \\ x = - y

Fazendo y = \alpha, concluímos que \boxed{\boxed{(x, y, z) = (- \alpha, \alpha, 0)}}!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}