• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[sistema linear 3 X 2]

[sistema linear 3 X 2]

Mensagempor juliosellsman » Qua Jun 03, 2015 21:55

Boa noite.
Me ajude, por favor.

Estou com dificuldades em resolver o sistema abaixo e discutir?
Ele é compatível? Se compatível, determinado ou indeterminado? ou Impossível?
Desculpe por não postar na linguagem LaTex.

x + 2y = -4
-3x + 4y = -18
2x -y=7

Tentei resolver por escalonamento e resultou na seguinte forma reduzida ampliada:

1 2 -4
0 1 -3
0 0 0

Porém, Pa =3 e Pc=2, seria impossível.
Mas, como a última linha é nula, deveria ser compatível indeterminado. Porém, logo percebe-se na segunda linha que y=-3. substituindo na 1ª equação x = 2.
Esses valores de x=2 e y=-3, atende todas as equações, então, o sistema é determinado e o conjunto solução é S = {2, -3}

Preciso de uma ajuda, estou me questionando o que fiz de errado para ter tanta dúvida neta resposta.

Desde já agradeço,
Julio C.
juliosellsman
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jun 03, 2015 21:33
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [sistema linear 3 X 2]

Mensagempor DanielFerreira » Qui Jun 04, 2015 23:18

Olá Julio, boa noite!

Note que ao somar todas as equações do sistema, somos capazes de encontrar uma das variáveis, veja:

\\ \left\{\begin{matrix}
x + 2y = - 4 \\ 
- 3x + 4y = - 18 \\ 
2x - y = 7 \end{matrix}\right. \\\\ x - 3x + 2x + 2y + 4y - y = - 4 - 18 + 7 \\\\ 5y = - 15 \\\\ \boxed{y = - 3}

Conclusão, tua resposta está correcta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1679
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [sistema linear 3 X 2]

Mensagempor juliosellsman » Sex Jun 05, 2015 00:14

Muito obrigado.
Porém, vc pode continuar me ajudando? Estou tentando entender por que após escalonar a última linha foi nula. Se é um SPD, a última linha pode ser nula?
juliosellsman
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jun 03, 2015 21:33
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [sistema linear 3 X 2]

Mensagempor DanielFerreira » Dom Jun 07, 2015 10:45

Acho que entendi sua dúvida: você está achando que o sistema é indeterminado, é isso? Se for, a resposta é não; o sistema é DETERMINADO.

Se tivéssemos diante de um sistema com três variáveis, por exemplo, e uma das linhas fosse anulada após o escalonamento, aí sim o sistema seria indeterminado. No seu exercício, temos apenas duas variáveis.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1679
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [sistema linear 3 X 2]

Mensagempor juliosellsman » Dom Jun 07, 2015 13:43

Obrigado. Era isso mesmo. Alguns autores não deixam claro que apenas sistemas quadrados, ao escalonar, se restar a última linha zerada, ele é indeterminado. Infelizmente, eles generaliza.
juliosellsman
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jun 03, 2015 21:33
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.