• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[sistema linear 3 X 2]

[sistema linear 3 X 2]

Mensagempor juliosellsman » Qua Jun 03, 2015 21:55

Boa noite.
Me ajude, por favor.

Estou com dificuldades em resolver o sistema abaixo e discutir?
Ele é compatível? Se compatível, determinado ou indeterminado? ou Impossível?
Desculpe por não postar na linguagem LaTex.

x + 2y = -4
-3x + 4y = -18
2x -y=7

Tentei resolver por escalonamento e resultou na seguinte forma reduzida ampliada:

1 2 -4
0 1 -3
0 0 0

Porém, Pa =3 e Pc=2, seria impossível.
Mas, como a última linha é nula, deveria ser compatível indeterminado. Porém, logo percebe-se na segunda linha que y=-3. substituindo na 1ª equação x = 2.
Esses valores de x=2 e y=-3, atende todas as equações, então, o sistema é determinado e o conjunto solução é S = {2, -3}

Preciso de uma ajuda, estou me questionando o que fiz de errado para ter tanta dúvida neta resposta.

Desde já agradeço,
Julio C.
juliosellsman
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jun 03, 2015 21:33
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [sistema linear 3 X 2]

Mensagempor DanielFerreira » Qui Jun 04, 2015 23:18

Olá Julio, boa noite!

Note que ao somar todas as equações do sistema, somos capazes de encontrar uma das variáveis, veja:

\\ \left\{\begin{matrix}
x + 2y = - 4 \\ 
- 3x + 4y = - 18 \\ 
2x - y = 7 \end{matrix}\right. \\\\ x - 3x + 2x + 2y + 4y - y = - 4 - 18 + 7 \\\\ 5y = - 15 \\\\ \boxed{y = - 3}

Conclusão, tua resposta está correcta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [sistema linear 3 X 2]

Mensagempor juliosellsman » Sex Jun 05, 2015 00:14

Muito obrigado.
Porém, vc pode continuar me ajudando? Estou tentando entender por que após escalonar a última linha foi nula. Se é um SPD, a última linha pode ser nula?
juliosellsman
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jun 03, 2015 21:33
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [sistema linear 3 X 2]

Mensagempor DanielFerreira » Dom Jun 07, 2015 10:45

Acho que entendi sua dúvida: você está achando que o sistema é indeterminado, é isso? Se for, a resposta é não; o sistema é DETERMINADO.

Se tivéssemos diante de um sistema com três variáveis, por exemplo, e uma das linhas fosse anulada após o escalonamento, aí sim o sistema seria indeterminado. No seu exercício, temos apenas duas variáveis.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [sistema linear 3 X 2]

Mensagempor juliosellsman » Dom Jun 07, 2015 13:43

Obrigado. Era isso mesmo. Alguns autores não deixam claro que apenas sistemas quadrados, ao escalonar, se restar a última linha zerada, ele é indeterminado. Infelizmente, eles generaliza.
juliosellsman
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jun 03, 2015 21:33
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59