• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divisão de prêmio

Divisão de prêmio

Mensagempor brunotst » Dom Ago 29, 2010 11:41

Galera não estou conseguindo resolver o problema abaixo, consigo encontrar meus resultados mas não bate com nenhuma resposta, chego a R$2.812,50 para o primeiro e terceiro funcionário, e R$1.406,25 para o segundo funcionário. Me ajudem.

Um prêmio de 5.625,00 será distribuido entre três funcionários de uma empresa na razão direta do tempo de trabalho nesta empresa, e na razão inversa na média anual de faltas de cada um. O primeiro(mais antigo) que trabalha a 8 anos na empresa, faltou 8 vezes; o segundo, que está lá a 5 anos, faltou 10 vezes; o terceiro está a apenas 1,5 ano e faltou 3 vezes. Qual será o valor a que tem direito aquele que irá receber mais?

a)R$4.000,00
b)R$3.600,00
c)R$2.500,00
d)R$1.900,00
e)R$1.800,00
brunotst
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Ago 01, 2010 12:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Divisão de prêmio

Mensagempor DanielRJ » Seg Ago 30, 2010 00:33

é amigo vo da um up aqui no post porque eu tambem calculei e obtive os mesmo resultados que você vamos esperar a correção de um professor que eu tambem quero saber.
:y:
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Divisão de prêmio

Mensagempor MarceloFantini » Seg Ago 30, 2010 03:47

8x + \frac{5x}{2} + \frac{1,5x}{2} = 5625 \Rightarrow x \approx 500

8x = 4000 \; \therefore A
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Divisão de prêmio

Mensagempor brunotst » Seg Ago 30, 2010 21:17

Não entendi Fantini.
brunotst
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Ago 01, 2010 12:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Divisão de prêmio

Mensagempor MarceloFantini » Seg Ago 30, 2010 23:29

A divisão será feita entre três funcionários. A parte que cada um receberá é proporcional ao tempo de trabalho (\prop t) e proporcional ao inverso de faltas no período todo (\prop \frac{1}{\frac{f}{t}}).

Então: A+B+C=5625, onde: A = \frac{t \cdot x}{\frac{f}{t}} = \frac{8x}{\frac{8}{8}} = 8x, B = \frac{t \cdot x}{\frac{f}{t}} = \frac{5 \cdot x}{\frac{10}{5}} = \frac{5x}{2} e C = \frac{t \cdot x}{\frac{f}{t}} = \frac{1,5 \cdot x}{\frac{3}{1,5}} = \frac{1,5 \cdot x}{2}. Jogando de volta na equação você tem o que eu postei antes.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?