• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema de equações

Sistema de equações

Mensagempor Moreno1986 » Sex Abr 23, 2010 13:54

Para uma construção foram pesquisados três tipos de concreto, de três diferentes fábricas, A, B e
C. Para cada quilo de concreto, determinou-se que:
I - O concreto da fábrica A tem 1 unidade de brita, 3 de areia e 4 de cimento.
II - O concreto da fábrica B tem 2, 3 e 5 unidades, respectivamente, de brita, areia e cimento.
III - o concreto da fábrica C tem 3 unidades de brita, 2 de areia e 3 de cimento.

O concreto ideal deverá conter 23 unidades de brita, 25 de areia e 38 de cimento. Usando-se concreto das três
fábricas, as quantidades, em kg, de cada uma delas, necessárias para se obter o concreto ideal serão,
respectivamente, para A, B e C:
a) 5, 3 e 2
b) 4, 4 e 2
c) 3, 4 e 5
d) 2, 3 e 5
e) 1, 5 e 3

Não estou conseguindo fazer esse, alguém pode ajudar a montar a equação?
Moreno1986
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Ter Abr 13, 2010 01:20
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em mecânica
Andamento: formado

Re: Sistema de equações

Mensagempor MarceloFantini » Sáb Abr 24, 2010 00:56

a + 2b +3c = 23
3a + 3b + 2c = 25
4a + 5b + 3c = 38

Qualquer dúvida comente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}