• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício do ITA-SP

Exercício do ITA-SP

Mensagempor Victor985 » Dom Nov 03, 2013 18:16

Considere a equação

x \begin{pmatrix} 4 \\ -16 \\ 4 \end{pmatrix} + y \begin{pmatrix} 5 \\1 \\2 \end{pmatrix} + z \begin{pmatrix} 7 \\ 0 \\3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\0 \end{pmatrix}
onde x, y e z são números reais. É verdade que:

a) a equação admite uma solução
b) em qualquer solução, x^2 = z^2
c) em qualquer solução, 16x^2 = 9z^2
d) em qualquer solução, 25y^2 = 16z^2
e) em qualquer solução, 9y^2 = 16z^2

Eu já tentei resolvê-lo várias vezes e não consegui.
Victor985
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sáb Nov 02, 2013 12:06
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Exercício do ITA-SP

Mensagempor e8group » Seg Nov 04, 2013 19:22

Basta obter a solução geral do sistema linear homogêneo e comparar o resultado com as alternativas .

Inicialmente , temos o sistema escrito sob a forma :

xA+ yB + zC = (0,0,0)^t . (A,B,C são as mesmas matrizes colunas dadas )

Esta expressão é equivalente a

M (x,y,z)^t = (0,0,0)^t , onde M é uma matriz 3 \times 3 em que suas colunas 1,2,3 são respectivamente as matrizes colunas A,B,C .

Graças ao wolfram alpha , já verificamos que det(M) = 0 , veja

http://www.wolframalpha.com/input/?i=de ... C3%7D%7D++ .

Isto significa que a matriz M não é invertível o que implica que o sistema é incompatível (não há solução ) ou compatível indeterminado (infinitas soluções ) , mas como todo sistema linear homogêneo possui pelo menos a solução trivial que é o vetor nulo (x,y,z) = (0,0,0),então por M ser singular , concluímos que o sistema em questão é compatível e indeterminado (possui infinitas soluções ) . Aqui já eliminamos o item (a) .


Segundo wolfram alpha ,solução geral do sistema é

y = 16x e z = -12x . Mas faça as contas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Exercício do ITA-SP

Mensagempor Victor985 » Ter Nov 05, 2013 18:24

Obrigado pela ajuda.
Victor985
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sáb Nov 02, 2013 12:06
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.