por oliveiracosmo » Sáb Set 01, 2012 19:03
Temos apenas

Eu já gastei duas folhas frente e verso tentando resolver, mas não estou conseguindo achar as respostas de cada uma das incógnitas, será simplesmente dizer que o sistema é possível e indeterminada?
-
oliveiracosmo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Set 01, 2012 18:55
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Sáb Set 01, 2012 22:10
Olá
Oliveiracosmo,
seja bem-vindo!
Da última equação:

Substituindo o 'valor' de x nas outras equações teremos:

Resolvendo o sistema por substituição...


Podemos concluir que o sistema é
indeterminado.
Espero ter ajudado!
Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por oliveiracosmo » Dom Set 02, 2012 14:25
Obrigado, ajudou bastante, sempre que poder estarei aqui no fórum.
-
oliveiracosmo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Set 01, 2012 18:55
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Seg Set 03, 2012 19:31
Não há de quê e volte sempre!!
Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Resolução de Um sistema Linear
por fttofolo » Qua Set 21, 2011 19:30
- 2 Respostas
- 4436 Exibições
- Última mensagem por fttofolo

Qua Set 21, 2011 21:47
Sistemas de Equações
-
- [Sistema Não-Linear de Equação] Resolução
por mdiego » Qui Jul 05, 2012 00:14
- 0 Respostas
- 4165 Exibições
- Última mensagem por mdiego

Qui Jul 05, 2012 00:14
Sistemas de Equações
-
- SISTEMA LINEAR DÚVIDA
por Fernanda Lauton » Qui Jun 10, 2010 19:43
- 4 Respostas
- 3188 Exibições
- Última mensagem por MarceloFantini

Sáb Jun 12, 2010 12:37
Sistemas de Equações
-
- Sistema Linear - Dúvida
por Veronica » Seg Abr 23, 2012 22:34
- 0 Respostas
- 1080 Exibições
- Última mensagem por Veronica

Seg Abr 23, 2012 22:34
Sistemas de Equações
-
- [Sistema linear dúvida]
por Aprendiz2012 » Dom Ago 26, 2012 21:26
- 1 Respostas
- 1523 Exibições
- Última mensagem por MarceloFantini

Dom Ago 26, 2012 22:57
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.