• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do 2º grau irracional

Equação do 2º grau irracional

Mensagempor TAE » Qua Jun 06, 2012 19:16

Olá, Boa noite, como resolve:

1=x-\sqrt[]{x^2-11}\Rightarrow (1-x)^2=(-\sqrt[]{x^2-11})^2\Rightarrow 1-2x+x^2=-(x^2-11)\Rightarrow 1-2x+x^2=-x^2 +11\Rightarrow -2x^2-2x-10=0
Certo até aqui?
Resposta:
x=6

Valeu.
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado

Re: Equação do 2º grau irracional

Mensagempor Russman » Qua Jun 06, 2012 23:08

Não!

Veja que

{(-\sqrt[]{{x}^{2}-11})}^{2} = \left|{x}^{2}-11 \right|.

Assim,

1-2x+{x}^{2} =  \left|{x}^{2}-11 \right|.

Se {x}^{2}>11, isto é,x>\sqrt[]{11}\simeq3,3166 então temos a equação

1-2x+{x}^{2} ={x}^{2}-11\Rightarrow x=6

Veja qe o valor calculado cumpre a condição inicial.

Se {x}^{2}<11, então saímos do conjunto dos Reais.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.