por TAE » Qua Jun 06, 2012 19:16
Olá, Boa noite, como resolve:
![1=x-\sqrt[]{x^2-11}\Rightarrow (1-x)^2=(-\sqrt[]{x^2-11})^2\Rightarrow 1-2x+x^2=-(x^2-11)\Rightarrow 1-2x+x^2=-x^2 +11\Rightarrow -2x^2-2x-10=0 1=x-\sqrt[]{x^2-11}\Rightarrow (1-x)^2=(-\sqrt[]{x^2-11})^2\Rightarrow 1-2x+x^2=-(x^2-11)\Rightarrow 1-2x+x^2=-x^2 +11\Rightarrow -2x^2-2x-10=0](/latexrender/pictures/ad45e81e28805e8c29af8efdbf2dcfcd.png)
Certo até aqui?
Resposta:
x=6
Valeu.
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
-
TAE
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Ter Mar 20, 2012 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: TÉC. ELETRÔNICA
- Andamento: formado
por Russman » Qua Jun 06, 2012 23:08
Não!
Veja que
![{(-\sqrt[]{{x}^{2}-11})}^{2} = \left|{x}^{2}-11 \right| {(-\sqrt[]{{x}^{2}-11})}^{2} = \left|{x}^{2}-11 \right|](/latexrender/pictures/43fa8852cb028aa21e21d3eed107c182.png)
.
Assim,

.
Se

, isto é,
![x>\sqrt[]{11}\simeq3,3166 x>\sqrt[]{11}\simeq3,3166](/latexrender/pictures/fdd1826941c4141b5776552083be6382.png)
então temos a equação

Veja qe o valor calculado cumpre a condição inicial.
Se

, então saímos do conjunto dos Reais.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Irracional
por luanxd » Ter Fev 09, 2010 23:44
- 2 Respostas
- 2091 Exibições
- Última mensagem por MarceloFantini

Qua Fev 10, 2010 12:38
Sistemas de Equações
-
- equação irracional
por Rosana Vieira » Ter Nov 29, 2011 13:51
- 1 Respostas
- 1613 Exibições
- Última mensagem por ivanfx

Ter Nov 29, 2011 15:04
Funções
-
- Equação irracional
por PeterHiggs » Sex Set 28, 2012 12:33
- 2 Respostas
- 1578 Exibições
- Última mensagem por PeterHiggs

Sex Set 28, 2012 22:14
Álgebra Elementar
-
- Equação irracional
por Flordelis25 » Sáb Abr 20, 2013 17:39
- 2 Respostas
- 1588 Exibições
- Última mensagem por Flordelis25

Sex Mai 24, 2013 17:17
Equações
-
- Equaçao Irracional
por Amanda91 » Qua Jul 10, 2013 03:05
- 3 Respostas
- 1846 Exibições
- Última mensagem por DanielFerreira

Sáb Nov 02, 2013 09:14
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.