por ursoforte » Seg Ago 15, 2011 13:06
Eu sei ate resolver equação do 2º grau usando o delta e Baskara, mas tenho um indice muito grande em resolver problemas como esse "A área de um retângulo é de 64cm quadrado . Nessas condições, determine as dimensões do retângulo sabendo que o comprimento mede (x+6) m e a largura mede (x- 6) m.". A minha dificuldade esta em montar a equação para resolver.
Se alguem souber a onde posso encontrar alguns problemas que ensine fazer as formulas, me indique pra que posso praticar;
Desde ja estou agradecido.
-
ursoforte
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Ago 15, 2011 09:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Molina » Seg Ago 15, 2011 13:34
Bom dia!
ursoforte escreveu:Eu sei ate resolver equação do 2º grau usando o delta e Baskara, mas tenho um indice muito grande em resolver problemas como esse "A área de um retângulo é de 64cm quadrado . Nessas condições, determine as dimensões do retângulo sabendo que o comprimento mede (x+6) m e a largura mede (x- 6) m.". A minha dificuldade esta em montar a equação para resolver.
Primeiro de tudo faça um desenho de um retângulo e nomeie os lados, conforme consta no enunciado. Os lados maiores terão
x+6 metros e os lados menores terão
x-6 metros.
A área do retângulo é dado por:

, onde
b é a base do retângulo e
h é a altura do retângulo. Perceba que dessa equação você já tem todas as informações (A, b e h):


Agora você precisa descobrir o valor de x para que isso ocorra. Para isso, faça a distributiva e vai chegar em uma equação de 2º grau.
Faça e poste suas tentativas. Caso tenha dúvida, avise!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por ursoforte » Seg Ago 15, 2011 19:12
Infelismente não consegui desenvolver a equação mas vou postar aqui até a onde consegui
x{2}+6x-36
Delta=6{2}-4*1*(-36)
Delta=36-4*(-36)
Delta=-4
não dava nem mais pra continuar pois o resultado na minha apostila e 16cm e 4cm
-
ursoforte
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Ago 15, 2011 09:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Molina » Seg Ago 15, 2011 21:42
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por ursoforte » Qua Ago 17, 2011 19:40
Obrigado,
estou reforçando meus conhecimentos em matemática básica, e logo estarei postando minhas dúvidas, pois estudo através de livros e pesquinas na internet, tenho dificuldade financeira para pagar um professor particular,e pela graça de Deus encontrei alguém solidários e com boa disposição como você pra ajudar a todos neste forum.
fique na graça de Deus
Raimundo
-
ursoforte
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Ago 15, 2011 09:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Molina » Qua Ago 17, 2011 20:02
Boa noite, Raimundo!
ursoforte escreveu:Obrigado,
estou reforçando meus conhecimentos em matemática básica, e logo estarei postando minhas dúvidas, pois estudo através de livros e pesquinas na internet, tenho dificuldade financeira para pagar um professor particular,e pela graça de Deus encontrei alguém solidários e com boa disposição como você pra ajudar a todos neste forum.
fique na graça de Deus
Raimundo
Garanto que o fórum é tão produtivo quanto a contratação de um professor particular. Se você fizer bom uso deste espaço seus objetivos serão alcançados em relação a matemática. Mas para isso, muito empenho e dedicação.
Conte conosco!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problemas equação 1° grau, dúvida.
por Clairelz12 » Sáb Ago 29, 2009 03:44
- 4 Respostas
- 7308 Exibições
- Última mensagem por Elcioschin

Sáb Ago 29, 2009 19:18
Álgebra Elementar
-
- Problemas de equação e sistemas de 1º grau
por gigante2010 » Dom Out 17, 2010 15:22
- 3 Respostas
- 4089 Exibições
- Última mensagem por MarceloFantini

Dom Out 17, 2010 23:00
Tópicos sem Interação (leia as regras)
-
- Problemas de equação do primeiro grau.
por Andrewo » Seg Fev 20, 2012 08:55
- 2 Respostas
- 5536 Exibições
- Última mensagem por Andrewo

Seg Fev 20, 2012 11:35
Sistemas de Equações
-
- Problemas de equação do primeiro grau.
por Andrewo » Qui Fev 23, 2012 18:00
- 3 Respostas
- 4356 Exibições
- Última mensagem por LuizAquino

Sex Fev 24, 2012 10:56
Sistemas de Equações
-
- Problemas de equação do primeiro grau III
por Andrewo » Seg Fev 27, 2012 11:58
- 3 Respostas
- 3990 Exibições
- Última mensagem por MarceloFantini

Ter Fev 28, 2012 16:04
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.