• Anúncio Global
    Respostas
    Exibições
    Última mensagem

value of expression

value of expression

Mensagempor stuart clark » Seg Mai 30, 2011 00:31

If x,y,z are real no. such that \left\{\begin{array}{c}
x+y+z=2\\
x^2+y^2+z^2=16\\
xyz=1\end{array}\right. .Then Calculate value of \displaystyle \frac{1}{xy+2z}+\frac{1}{yz+2x}+\frac{1}{zx+2y}
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: value of expression

Mensagempor FilipeCaceres » Seg Mai 30, 2011 01:34

Note that z = 2 - (x+y), x = 2 - (y+z), and y = 2 - (x+z).

From here, notice that xy + 2z = (x-2)(y-2), yz + 2x = (y-2)(z-2), and xz = (x-2)(z-2).

It should be clear that what we need to do is construct a polynomial with x-2,\, y-2,\, z-2 as roots.

Firstly, construct a polynomial with x, y, z as roots. From x + y + z = 2 and x^{2} + y^{2} + z^{2} = 16, get the equation xy + yz + xz = -6.

Thus a cubic with roots x, y, z is a^{3} - 2a^{2} - 6a - 1.

A cubic with roots x-2,\, y-2,\, z-2 is (a+2)^{3} - 2(a+2)^{2} - 6(a+2) - 1 = a^{3} + 4a^{2} - 2a - 13.

\frac{1}{(x-2)(y-2)} + \frac{1}{(y-2)(z-2)} + \frac{1}{(x-2)(z-2)} = \frac{-4}{13}

Answer: \boxed{\frac{-4}{13}}
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: value of expression

Mensagempor stuart clark » Seg Mai 30, 2011 06:27

Thanks FilipeCaceres
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Sistemas de Equações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}