• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cefet-mg

cefet-mg

Mensagempor Thulio_Parazi » Ter Abr 10, 2012 10:06

QUESTÃO 06
Seja a
matriz A =
1 2-1
0 1 0
1 4 6

para cada n ? {0,1,2,3,...} considere a
matriz Bn =(1/2) elevado a n e a mesma multiplicada pela matriz A.
O valor de b = det B0 + det B1 + det B2 + ... é :
Consegui resolver os determinantes ,mas depois não conseguir dar a soma de todos os determinantes que tende a infinito.
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: cefet-mg

Mensagempor MarceloFantini » Ter Abr 10, 2012 21:13

Thulio, por favor leia as regras, em especial a número 2. Use LaTeX para digitar suas fórmulas. A matriz B_n é B_n = \left( \frac{1}{2} \right)^n A?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: cefet-mg

Mensagempor Thulio_Parazi » Seg Abr 16, 2012 11:50

Você pode me ajudar a resolver a esta questão?
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}