por Rhyu » Sex Abr 06, 2012 17:26
Bom estou com dificuldades em achar a matriz inversa em matrizes 4x4 não sei por onde eu começo a zerar as colunas como nesse exercicio
I1 1 1 1I Linha 1 (1,1,1,1)
I1 2 -1 2I Linha 2 (1,2,-1,2)
I1-1 2 1I Linha 3 (1,-1,2,1)
I1 3 3 2I Linha 4 (1,3,3,2)
Como eu acho a inversa dessa aplicando o método de Gauss Jordan, gostaria de saber também qual a ordem eu devo seguir para zerar os termos.
-
Rhyu
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Mar 23, 2012 21:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por LuizAquino » Sex Abr 06, 2012 21:31
Rhyu escreveu:Bom estou com dificuldades em achar a matriz inversa em matrizes 4x4 não sei por onde eu começo a zerar as colunas como nesse exercicio
I1 1 1 1I Linha 1 (1,1,1,1)
I1 2 -1 2I Linha 2 (1,2,-1,2)
I1-1 2 1I Linha 3 (1,-1,2,1)
I1 3 3 2I Linha 4 (1,3,3,2)
Como eu acho a inversa dessa aplicando o método de Gauss Jordan, gostaria de saber também qual a ordem eu devo seguir para zerar os termos.
Se você já sabe determinar a inversa de uma matriz 3 por 3 usando o método de Gauss Jordan, então basta aplicar a mesma ideia para uma matriz 4 por 4.
Siga basicamente os seguintes passos:
1) transformar em 0 todos os elementos abaixo de

;
2) transformar em 0 todos os elementos abaixo de

;
3) transformar em 0 todos os elementos abaixo de

;
4) transformar em 0 todos os elementos acima de

;
5) transformar em 0 todos os elementos acima de

;
6) transformar em 0 todos os elementos acima de

;
7) transformar em 1 todos os elementos na diagonal principal.
Veja o início do processo.
Passo 1)




Passo 2)



Passo 3)


Agora tente terminar o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Método de Gauss Jordan
por Claudin » Sex Ago 26, 2011 03:00
- 2 Respostas
- 4673 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 22:51
Álgebra Elementar
-
- Método de de Gauss-Jordan
por AmandaPmend » Seg Nov 10, 2014 14:46
- 1 Respostas
- 3434 Exibições
- Última mensagem por adauto martins

Ter Nov 11, 2014 14:51
Álgebra Linear
-
- Resolução de sistemas (método de Gauss-Jordan)
por Danilo » Qua Nov 28, 2012 20:08
- 1 Respostas
- 3018 Exibições
- Última mensagem por e8group

Qua Nov 28, 2012 20:42
Sistemas de Equações
-
- Como aplicar o metodo de Gauss Jordan nesse sistema.
por 380625 » Sáb Ago 20, 2011 16:19
- 3 Respostas
- 5939 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 22:26
Sistemas de Equações
-
- Eliminação Gauss Jordan
por kassya » Ter Abr 22, 2014 16:54
- 0 Respostas
- 2618 Exibições
- Última mensagem por kassya

Ter Abr 22, 2014 16:54
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.