Página 1 de 1

DUVIDA PROPRIEDADES MATRICIAIS

MensagemEnviado: Ter Mar 27, 2012 22:51
por Guilherme Carvalho
1- Mostre que {\left(A+B \right)}^{T}={A}^{T}+{B}^{T} e {\left(AB \right)}^{T}={B}^{T}{A}^{T}

2- Uma matriz B é dita simétrica quando {B}^{T}=B. Mostre que A é B são simétricas e que A+kB é simétrica para todo k pertencente ao reais. Será AB simétrica?

Re: DUVIDA PROPRIEDADES MATRICIAIS

MensagemEnviado: Qua Mar 28, 2012 18:25
por LuizAquino
Guilherme Carvalho escreveu:1- Mostre que {\left(A+B \right)}^{T}={A}^{T}+{B}^{T} e {\left(AB \right)}^{T}={B}^{T}{A}^{T}


Basta aplicar as definições para essas operações.

Lembre-se que dada uma matriz X, dizemos que x_{ij} é o seu termo na posição da linha i e coluna j.

Temos então as seguintes definições.

1) Seja S = X + Y. Temos que s_{ij} = x_{ij} + y_{ij} . (Aqui X e Y devem ser matrizes com mesma ordem).

2) Seja \bar{X} = X^T. Temos que \bar{x}_{ij} = x_{ji} .

3) Seja P = XY. Temos que: p_{ij} = \sum_{k=1}^n x_{ik}y_{kj} . (Aqui o número de colunas de X deve ser igual ao número de linhas de Y. Estamos supondo que esse número é n).

Por exemplo, vejamos a prova para a primeira identidade.

Seja S = A + B. Temos que s_{ij} = a_{ij} + b_{ij} .

Seja \bar{S} = S^T . Temos que \bar{s}_{ij} = s_{ji} = a_{ji} + b_{ji} .

Por outro lado, sejam \bar{A} = A^T e \bar{B} = B^T . Se R = A^T + B^T, temos que r_{ij} = \bar{a}_{ij} + \bar{b}_{ij} .

Lembrando que \bar{a}_{ij} = a_{ji} e \bar{b}_{ij} = b_{ji}, temos que \bar{s}_{ij} = r_{ij} .

Conclusão: os termos da matriz (A+B)^T são os mesmos da matriz A^T + B^T . Isto é, temos que (A+B)^T = A^T + B^T .

Agora tente provar a segunda identidade.

Guilherme Carvalho escreveu:2- Uma matriz B é dita simétrica quando {B}^{T}=B. Mostre que A é B são simétricas e que A+kB é simétrica para todo k pertencente ao reais. Será AB simétrica?


Eu presumo que o texto original seja algo como:

2- Uma matriz B é dita simétrica quando {B}^{T}=B. Mostre que se A e B são simétricas, então A+kB é simétrica para todo k pertencente ao reais. Será AB simétrica?


Aqui basta aplicar os resultados já provados no exercício 1). Mas tem um detalhe: você vai precisar provar que (kB)^T = k\left(B^T\right) , com k um número real qualquer. Além disso, lembre-se de mais outro detalhe: a multiplicação de matrizes não é comutativa. Isto é, nem sempre é verdade que AB = BA.