• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matriz]-Nulidade

[Matriz]-Nulidade

Mensagempor Ana_Rodrigues » Qua Mar 14, 2012 17:14

Qual a diferença entre a nulidade de uma matriz e a nulidade de um sistema?
Eu sei que a nulidade de um sistema vai indicar as possíveis (uma, infinitas ou nenhuma) soluções para esse sistema,porém não entendo pra que serve a nulidade de uma matriz, já que ambas são calculadas de maneira diferente.

Agradeço desde já, a quem me ajudar a entender!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Matriz]-Nulidade

Mensagempor MarceloFantini » Qua Mar 14, 2012 18:33

Você está possivelmente confundindo conceitos. A nulidade de uma matriz são as matrizes coluna X tais que AX=0. Não existe conceito análogo para "nulidade" de um sistema.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Matriz]-Nulidade

Mensagempor Ana_Rodrigues » Qua Mar 14, 2012 18:44

Acho que eu não soube expressar minha dúvida.

Por onde eu estou estudando existem duas formas de calcular a nulidade de uma matriz:
N=n-p

onde:
n= numero de colunas da matriz
p= posto da matriz (que é o numero de linhas não nulas na matriz ampliada)

e

N=n-p

onde:

n=numero de incógnitas do sistema ou se preferir numero de incógnitas da matriz incógnitas
p= posto da matriz (neste caso há uma comparação entre o posto da matriz coeficiente e o posto da matriz ampliada).




Quero saber qual a diferença entre essas duas formas de calcular a nulidade, o que a primeira quer dizer?
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Matriz]-Nulidade

Mensagempor MarceloFantini » Qua Mar 14, 2012 18:52

Um fato sobre matrizes é que o posto por linhas é igual ao posto por colunas. Ou seja, se você tem uma matriz não quadrada, seu posto será p(A) \leq m se A for m \times n com m<n (nada de especial em ter menos linhas que colunas). Essas duas formas são equivalentes, a mesma maneira de dizer a mesma coisa. Mas a nulidade não diz se o sistema é impossível ou possível.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Matriz]-Nulidade

Mensagempor caiou » Ter Jun 12, 2018 21:07

Você confundiu os conceitos, o segundo N= n-p, não é nulidade, e sim grau de liberdade.
caiou
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jun 12, 2018 21:04
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em sistema de informação
Andamento: cursando


Voltar para Matrizes e Determinantes

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}