por Claudin » Qui Mar 01, 2012 17:21
4. Classifique cada uma das afirmações abaixo como
VERDADEIRA ou
FALSA. Se verdadeira, prove, se falsa, prove ou dê um contra-exemplo.
(a) Seja A uma matriz n n. Se

então det(A) = det(B).
?
(b) Se A e uma matriz 3 3 tal que det(A) = 2 ent~ao det(2A) = 4.
falso ?
(c) Para quaisquer matrizes A e B de ordem n n, vale sempre que det(A B) = det(A) det(B).
falso ?
(d) Se A e B são matrizes invertveis então a matriz AB e invertível.
falso ?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Qui Mar 01, 2012 17:24
Em algumas encontrei resultado, porém gostaria de saber se está correto.
E coloquei a resposta logo a frente da alternativa.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Qui Mar 01, 2012 21:23
A primeira é verdadeira (lembre-se da propriedade que

, assumindo que estamos usando números racionais, reais ou complexos).
A segunda é falsa. Quando você tem um número inteiro multiplicando uma linha ou coluna de uma matriz, você pode retirá-lo para fora do determinante. Se você tiver um número multiplicando
todas as colunas, quantas vezes ele sairá?
A terceira é falsa para
corpos não comutativos, isto é, sistemas algébricos de números onde não vale troca de ordem na operação de multiplicação.
Para a última, lembre-se da dica da primeira. Termine.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Claudin » Sáb Mar 03, 2012 13:43
2ª e 3ª alternativa
4ª alternativa seria
Verdadeira?
Tendo em vista que, se a matriz A e a matriz B são invertíveis, quer dizer que o determinante é diferente de zero. E segundo a propriedade

Ou seja, o determinante de AB seria diferente de zero, o que tornaria AB também invertível.
Já a primeira alternativa, continuo sem entender.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Sáb Mar 03, 2012 13:54
Claudin escreveu:4ª alternativa seria Verdadeira?
Tendo em vista que, se a matriz A e a matriz B são invertíveis, quer dizer que o determinante é diferente de zero. E segundo a propriedade detA.detB=detAB
Ou seja, o determinante de AB seria diferente de zero, o que tornaria AB também invertível.
Ok.
Claudin escreveu:Já a primeira alternativa, continuo sem entender.
Você já entendeu que é verdade que:

Na primeira alternativa, temos que:
Agora leia sobre as propriedades dos determinantes:
Determinantehttp://pt.wikipedia.org/wiki/Determinante#PropriedadesTente terminar o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6946 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- [Matriz]- inversa de uma matriz
por Ana_Rodrigues » Seg Mar 26, 2012 08:54
- 2 Respostas
- 3413 Exibições
- Última mensagem por Ana_Rodrigues

Seg Mar 26, 2012 18:05
Matrizes e Determinantes
-
- [MATRIZ]Determinante da Matriz 4x4
por LAZAROTTI » Qui Mai 03, 2012 22:33
- 1 Respostas
- 6605 Exibições
- Última mensagem por LuizAquino

Sex Mai 11, 2012 08:00
Matrizes e Determinantes
-
- [Matriz] Matriz com potencias
por rochadapesada » Dom Abr 07, 2013 20:29
- 3 Respostas
- 4544 Exibições
- Última mensagem por DanielFerreira

Seg Abr 08, 2013 17:32
Matrizes e Determinantes
-
- matriz
por Barbara » Ter Ago 18, 2009 15:26
- 4 Respostas
- 4686 Exibições
- Última mensagem por Molina

Qui Ago 20, 2009 18:11
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.