• Anúncio Global
    Respostas
    Exibições
    Última mensagem

AJUDA COM MATRIZES

AJUDA COM MATRIZES

Mensagempor feeh1208 » Qui Dez 08, 2011 13:10

fiquei afastado do colegio porque cai de moto e me passaram esse trabalho para fazer, mais eu não sei nem como começar. :/

Ajuda em Matrizes (não consigo resolver esses problemas).?
Para todas as questões a seguir, considere as matrizes.
(1 1) <-A (0 6) <- B (-2 -3) <- C
(5 7) <-A (9 3) <- B (5 3) <- C

1. Determine 2A.2B
2. Determine 2C^t + 2b
3. Determine B^t - 2c
4. Determine A-¹
feeh1208
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Dez 08, 2011 13:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: matemática
Andamento: cursando

Re: AJUDA COM MATRIZES

Mensagempor TheoFerraz » Qui Dez 08, 2011 14:52

Bom, eu aaacho que o que voce quis dizer foi

A = 
\begin{pmatrix}
   1 & 1  \\ 
   5 & 7 
\end{pmatrix}

B = 
\begin{pmatrix}
  9 & 6  \\ 
   0 & 3 
\end{pmatrix}

C = 
\begin{pmatrix}
   -2 & -3  \\ 
   5 & 3 
\end{pmatrix}

Basicamente, o que se deve fazer é...

se voce precisa somar (ou subtrair) duas matrizes. voce soma (ou subtração) termo por termo, respectivamente.

Por exemplo

A + B = 
\begin{pmatrix}
   1+9 & 1+6 \\ 
   5+0 & 7+3 
\end{pmatrix}

Se voce quiser multiplicar por um escalar... tipo 2, voce multiplica todos os membros por 2. (o mesmo vale para divisão por escalar)

Agora o mais chatinho. Se voce precisa Multiplicar duas matrizes, voce vai ter que:

Somar a multiplicação respectiva de uma linha da matriz da esquerda, com uma linha da matriz da direita. o melhor jeito de aprender isso é com exemplos.

Usando a letra a) como exemplo.

calcule antes de qualquer coisa 2A e 2B

2A = 
\begin{pmatrix}
   2 & 2 \\ 
   10 & 14 
\end{pmatrix}
 \;\;\; ; \;\;\;
2B = 
\begin{pmatrix}
   0 & 12  \\ 
   18 & 9 
\end{pmatrix}

agora multipliquemos...

\begin{pmatrix}
   2 & 2 \\ 
   10 & 14 
\end{pmatrix}
\times 
\begin{pmatrix}
   0 & 12  \\ 
   18 & 9 
\end{pmatrix}

Voce deve fazer o seguinte.

pegue a PRIMEIRA linha da matriz da esquerda, e a PRIMEIRA coluna da matriz da direita.

\begin{pmatrix}
   2 & 2 \\ 
   * & * 
\end{pmatrix}
\times 
\begin{pmatrix}
   0 & *  \\ 
   18 & * 
\end{pmatrix}

Multiplique o termo A11 com o B11, e some com A21 vezes o termo B12.

assim:

2 \times 0 + 2 \times 18 = 38

Esse numero ficará no lugar de coordenadas 1,1 da resposta, pois voce pegou a PRIMEIRA linha e a PRIMEIRA coluna... Resposta = 
\begin{pmatrix}
   38 & *  \\ 
   * & * 
\end{pmatrix}


Depois vamos pegar a PRIMEIRA linha e a SEGUNDA coluna

\begin{pmatrix}
   2 & 2 \\ 
   * & * 
\end{pmatrix}
\times 
\begin{pmatrix}
   * & 12  \\ 
   * & 9 
\end{pmatrix}

A11 vezes B21, mais, A12 vezes B22... {Um bom jeito de fazer essa multiplicação de forma automática é não pensar nesses numeros! coloque o dedo no começo de uma linha e outro dedo no começo de uma coluna... Vá andando os dedos e multiplicando termo à termo! Uma dica... eu GARANTO que se voce fizer 5 multiplicações de matriz por 3 dias seguidos (isso da uns 10 minutos) voce vai fazer essa multiplicação automática... eu digo isso pq confunde, essa multiplicação é chata!}

vai resultar em 36 essa ultima 2 \times 12 + 2 \times 9 ... e voce vai posicioná-la no termo de coordenadas 1,2 da resposta, por que usou a PRIMEIRA linha com a SEGUNDA coluna. resultando

Resposta = 
\begin{pmatrix}
   38 & 26  \\ 
   * & * 
\end{pmatrix}


depois voce precisa fazer da SEGUNDA linha com a PRIMEiRA coluna

\begin{pmatrix}
   * & * \\ 
   10 & 14 
\end{pmatrix}
\times 
\begin{pmatrix}
   0 & *  \\ 
   18 & * 
\end{pmatrix}

10 \times 0 + 14 \times 18

e vai resultar 252

Resposta = 
\begin{pmatrix}
   38 & 26  \\ 
   252 & * 
\end{pmatrix}


tente fazer a ultima sosinho.


--> quando voce precisar calcular uma transposta... ou {A}^{t}

só o que se deve fazer é inverter as linhas pelas colunas.

--> Quando voce precisar de uma matriz inversa, ou {A}^{-1} Voce deve multiplicar a matriz A por uma matriz desconhecida... ou seja,
\begin{pmatrix}
   a & b  \\ 
   c & d 
\end{pmatrix}

e tomar como resultado a matriz identidade I =
\begin{pmatrix}
   1 & 0  \\ 
   0 & 1 
\end{pmatrix}

isso vai resultar num sistema facil de ser resolvido.
.

{{ Eu realmente espero que tenha ajudado! demorei quase uma hora pra responder esse topico! AUSHASUHAHUSAHU }}

bom estudo

.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.