• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinante

Determinante

Mensagempor Jessi » Seg Abr 20, 2009 16:10

Não consigo resolver esse problema

Os pontos ( 6, 12) e (0, -6) são ligados por uma linha reta.Um terceiro ponto nessa reta pode ser?
Jessi
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Abr 20, 2009 15:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Determinante

Mensagempor Molina » Seg Abr 20, 2009 17:04

Boa tarde, Jessi.

Construa o plano cartesiano e marque os 2 pontos que o enunciado informa.
Ligue esses dois pontos por uma reta e todos esses pontos farão parte da mesma.

Outra forma é procurar um termo geral para esses dois pontos.
Assim, qualque valor que x assume, y assumirá um valor diferente.

Ajudou?

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.


cron