• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz Inversa

Matriz Inversa

Mensagempor Claudin » Qui Set 15, 2011 17:44

A matriz inversa da Identidade é a própria identidade correto?

Em exercícios de demonstração de propriedades é conveniente utilizar a identidade? Pois ja que sua inversa é a mesma que a matriz normal, iria facilitar nos cálculos algébricos.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz Inversa

Mensagempor MarceloFantini » Qui Set 15, 2011 17:57

Conveniente em que sentido? Tente dar um exemplo de demonstração que você acredite que seja útil.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz Inversa

Mensagempor Claudin » Qui Set 15, 2011 18:12

Conveniente no sentido de evitar contas, pois a identidade só tem 1 e 0, o que facilita qualquer operação algébrica.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz Inversa

Mensagempor MarceloFantini » Qui Set 15, 2011 18:15

Se você multiplicar não fará efeito, então não vejo como irá ajudar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz Inversa

Mensagempor Claudin » Qui Set 15, 2011 18:19

Então me mostre uma matriz simples, com uma inversa simples também, para eu utilizar em meus contra exemplos na prova amanha.
(Simples no sentido algebricamente). :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz Inversa

Mensagempor MarceloFantini » Qui Set 15, 2011 18:26

Eu não sei o que você quer, pois você não está sendo claro o suficiente para mim até agora. Se você acha que a matriz identidade será útil, então use-a.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz Inversa

Mensagempor Claudin » Qui Set 15, 2011 18:31

Ta bom Marcelo. Agora estou lhe fazendo um pedido, queria que você passasse pra mim uma matriz simples 2x2 mesmo, e sua inversa, também simples, para facilitar quando eu precisar de contra exemplo, eu terei ela, para fazer o processo algébrico. Seria possível você fornecer essas matrizes?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz Inversa

Mensagempor MarceloFantini » Qui Set 15, 2011 18:34

Porque você mesmo não constrói essa matriz? Não sei qual a diferença entre eu criar o exemplo ou você.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz Inversa

Mensagempor Claudin » Qui Set 15, 2011 18:37

Legal Marcelo. Obrigado pela ajuda.
Irei pedir outra pessoa então, não se esqueça, quem vem perguntar aqui no fórum é porque está com dúvida, e você como moderador de um Fórum TIRA DÚVIDAS, deveria utilizar este objetivo, senão quer ajudar, não posso fazer nada. Mesmo assim obrigado.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz Inversa

Mensagempor MarceloFantini » Qui Set 15, 2011 18:41

Não sei a sua dúvida, até agora você não me esclareceu o que você quer. A única coisa que eu sei é que você quer que eu gaste um certo tempo criando uma matriz simples e calcule a sua inversa para que você tenha de contra-exemplo. Onde está a sua dúvida? Não sabe calcular uma inversa? Vou te dar uma matriz que para mim é simples:

A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}

Para calcular a sua inversa basta fazer A \cdot A^{-1} = I, onde I é a identidade e A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}. Logo:

A \cdot A^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Basta encontrar os valores de a, b, c e d e você terá a sua inversa que não deve ser muito complicada.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz Inversa

Mensagempor Claudin » Qui Set 15, 2011 18:45

Então ajudar os outros aqui é perca de tempo? kkkkkkkkkkkk
Não precisa perder seu precioso tempo nao, ja fiz minha matriz com a inversa, eu queria um exemplo seu para posteriormente eu postar minha dúvida na demonstração que estou fazendo, mas obrigado novamente. Agora eu é que estou perdendo meu tempo em discutir assunto, blá blá daqui blá bla blá ali, e sanar minha dúvida nada ne. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz Inversa

Mensagempor MarceloFantini » Qui Set 15, 2011 18:51

Este será meu último comentário aqui. Primeiramente, não disse que ajudar os outros é perda de tempo, note que você mesmo criou a matriz e, até agora, não disse qual é a demonstração que você tem dúvida, o que me impede de melhor poder esclarecer suas dificuldades.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59