• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes

Matrizes

Mensagempor Giles » Qua Out 29, 2008 23:24

Seja M = {[{a}_{ij}]}_{nxn} uma matriz quadrada de ordem n, onde aij= i + j. Nessas condições, a soma dos elementos da diagonal principal dessa matriz é:

a -) n²

b-) 2n + 2n²

c-) 2n + n²

d-) n² + n

e-) n + 2n²

OBS.:

Soma dos n primeiros termos de uma PA: {S}_{n} = ({a}_{1} + {a}_{n}) . \frac{n}{2}

Soma dos n primeiros termos de uma PG: {S}_{n} = \frac{{a}_{1} ( {q}^{n} - 1)}{q - 1}


Outra que não consegui resolver:

Considere a matriz A = [2 -1] e uma matriz B = [{b}_{ij}]. Se A . B. A = A, então é correto afirmar que a matriz B:

a-) {b}_{21} = 2{b}_{11}

b-) {b}_{21} = -1 + 2{b}_{11}

c-) {b}_{21} = 1 + 2{b}_{11}

d-) {b}_{11} = 1 + 2{b}_{12}

e-) {b}_{21} ={b}_{11}

Agradeço a atenção!
"As pessoas que vencem nessa vida são aquelas que procuram as circunstâncias de que precisam e quando não as encontram, as criam"
Avatar do usuário
Giles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Dom Out 19, 2008 11:14
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Construção Civil Integr
Andamento: cursando

Re: Matrizes

Mensagempor Molina » Qua Out 29, 2008 23:45

Giles escreveu:Seja M = {[{a}_{ij}]}_{nxn} uma matriz quadrada de ordem n, onde aij= i + j. Nessas condições, a soma dos elementos da diagonal principal dessa matriz é:

a -) n²

b-) 2n + 2n²

c-) 2n + n²

d-) n² + n

e-) n + 2n²

OBS.:

Soma dos n primeiros termos de uma PA: {S}_{n} = ({a}_{1} + {a}_{n}) . \frac{n}{2}

Soma dos n primeiros termos de uma PG: {S}_{n} = \frac{{a}_{1} ( {q}^{n} - 1)}{q - 1}


A diagonal principal é formada por membros onde i = j.
Ou seja, 1+1, 2+2, 3+3, 4+4, ... , n+n => 2, 4, 6, 8, ... , 2n
Logo a sequencia a cima é uma PA de razão 2.

Usando a fórmula da Soma da PA:
{S}_{n} = ({a}_{1} + {a}_{n}) . \frac{n}{2}\Rightarrow(2+2n).\frac{n}{2}\Rightarrow \frac{2n}{2}+\frac{{2n}^{2}}{2}\Rightarrow n+{n}^{2}

Resposta: letra d
Se nao houve erro nas contas, é isso.

Abraços.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matrizes

Mensagempor Giles » Qui Out 30, 2008 00:11

molina escreveu:
Giles escreveu:Seja M = {[{a}_{ij}]}_{nxn} uma matriz quadrada de ordem n, onde aij= i + j. Nessas condições, a soma dos elementos da diagonal principal dessa matriz é:

a -) n²

b-) 2n + 2n²

c-) 2n + n²

d-) n² + n

e-) n + 2n²

OBS.:

Soma dos n primeiros termos de uma PA: {S}_{n} = ({a}_{1} + {a}_{n}) . \frac{n}{2}

Soma dos n primeiros termos de uma PG: {S}_{n} = \frac{{a}_{1} ( {q}^{n} - 1)}{q - 1}


A diagonal principal é formada por membros onde i = j.
Ou seja, 1+1, 2+2, 3+3, 4+4, ... , n+n => 2, 4, 6, 8, ... , 2n
Logo a sequencia a cima é uma PA de razão 2.

Usando a fórmula da Soma da PA:
{S}_{n} = ({a}_{1} + {a}_{n}) . \frac{n}{2}\Rightarrow(2+2n).\frac{n}{2}\Rightarrow \frac{2n}{2}+\frac{{2n}^{2}}{2}\Rightarrow n+{n}^{2}

Resposta: letra d
Se nao houve erro nas contas, é isso.

Abraços.


Obrigado Molina... Sua resposta está corretíssima! Muito obrigado!

Grande abraço!

Giles.
"As pessoas que vencem nessa vida são aquelas que procuram as circunstâncias de que precisam e quando não as encontram, as criam"
Avatar do usuário
Giles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Dom Out 19, 2008 11:14
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Construção Civil Integr
Andamento: cursando

Re: Matrizes

Mensagempor Molina » Qui Out 30, 2008 00:20

Giles, de nada!

Confirme apenas se na segunda atividade é A (vezes) B (vezes) A (igual) A

Abraços e bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matrizes

Mensagempor Giles » Qui Out 30, 2008 00:29

É isso mesmo! (Y)
"As pessoas que vencem nessa vida são aquelas que procuram as circunstâncias de que precisam e quando não as encontram, as criam"
Avatar do usuário
Giles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Dom Out 19, 2008 11:14
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Construção Civil Integr
Andamento: cursando

Re: Matrizes

Mensagempor diegodalcol » Qui Nov 13, 2008 23:53

estou com a seginte duvida na soma dessas duas matrizes:

\begin{pmatrix}
   0 & -3 & 0   \\ 
    
\end{pmatrix}+3

meu resultado foi:

\begin{pmatrix}
   3 & 0 & 3  \\ 
   
\end{pmatrix}

será que fiz certo?
diegodalcol
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mai 22, 2008 13:06
Área/Curso: Estudante
Andamento: cursando

Re: Matrizes

Mensagempor Molina » Sex Nov 14, 2008 01:21

diegodalcol escreveu:estou com a seginte duvida na soma dessas duas matrizes:

\begin{pmatrix}
   0 & -3 & 0   \\ 
    
\end{pmatrix}+3

meu resultado foi:

\begin{pmatrix}
   3 & 0 & 3  \\ 
   
\end{pmatrix}

será que fiz certo?

Olá Diego.

A primeira matriz é \begin{pmatrix}
   0 & -3 & 0   \\ 
    
\end{pmatrix} e a segunda é 3, certo?
c(i,j) = a(i,j) + b(i,j)
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matrizes

Mensagempor Molina » Sex Nov 14, 2008 01:24

diegodalcol escreveu:estou com a seginte duvida na soma dessas duas matrizes:

\begin{pmatrix}
   0 & -3 & 0   \\ 
    
\end{pmatrix}+3

meu resultado foi:

\begin{pmatrix}
   3 & 0 & 3  \\ 
   
\end{pmatrix}

será que fiz certo?

Olá Diego.

A primeira matriz é \begin{pmatrix}
   0 & -3 & 0   \\ 
    
\end{pmatrix} e a segunda é (3), certo?
A soma de matrizes só está definida para matrizes de mesma ordem,
e as matrizes a cima nao possuem mesma ordem.
Então nao tem sentido somar uma matriz 1x3 com outra 1x1.

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D