• Anúncio Global
    Respostas
    Exibições
    Última mensagem

matrizes

matrizes

Mensagempor luix henrique » Seg Out 13, 2008 15:42

poderiam me ajuda nesses exercicios que ja tentei de toda forma mas noa consegui resolve-los
é sobre matrizes


1-represente explicitamente cada uma das matrizes:
a)A=(aij)2x2 tal que aij=(-1)elevado i+j:

b)A=(aij)3x2 tal que aij={0 se i=j }:
{2i+j se i>j}
{j se i<j}


2-sao dadas as matrizesA=(3),B=(4) e C=(-2).resolva a equaçao "x+2.A(elevado a '' t'')=3.(B+C)(elevado a '' t''):
(2) (1) (1)


3-determine,se existir,a inversa da matriz (2 3)
(4 5):



é a ultima q é a pior de todas nao consegui de nenhum geito fazer

4-se ''A'' e "B" sao matrizes tais que A=(2 1) e B=(1 1 )calcule a matriz y=A(elevado a '' t'') .B:
(1 0) (2 5 )
(-3 1) (0 -1)
Editado pela última vez por luix henrique em Ter Out 14, 2008 13:01, em um total de 1 vez.
luix henrique
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Out 13, 2008 15:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: matrizes

Mensagempor Molina » Seg Out 13, 2008 20:13

Boa tarde, Luix Henrique.

Procure se informar como se escreve no forum através do LaTeX, onde a formatação das matrizes ficam certinhas e isso facilita a visualização de quem quer te ajudar.

luix henrique escreveu:1-represente explicitamente cada uma das matrizes:
a)A=(aij)2x2 tal que aij=(-1)elevado i+j:


Vou te ajudar nessa.
Vamos ver se tu consegue fazer as outras então:

a) A=({{a}_{ij}})_{2x2}\;tal\;que\;{a}_{ij}={(-1)}^{i+j}
Com isso temos uma matriz de ordem 2x2, ou seja, 2 linhas e 2 colunas:
A=\[
\left(
\begin{array}{ccc}
{a}_{ij} & {a}_{ij} \\
{a}_{ij} & {a}_{ij} \end{array}
\right)\]

:idea: IMPORTANTE: O i é o numero da linha e o j é o numero da coluna:
A=\[
\left(
\begin{array}{ccc}
{a}_{11} & {a}_{12} \\
{a}_{21} & {a}_{22} \end{array}
\right)\]

Utilizando o enunciado {a}_{ij}={(-1)}^{i+j}:
{a}_{11}={(-1)}^{1+1}={(-1)}^{2}=1
{a}_{12}={(-1)}^{1+2}={(-1)}^{3}=-1
{a}_{21}={(-1)}^{2+1}={(-1)}^{3}=-1
{a}_{22}={(-1)}^{2+2}={(-1)}^{4}=1

Logo: A=\[
\left(
\begin{array}{ccc}
1 & -1 \\
-1 & 1 \end{array}
\right)\]

:y: Bom estudo!
Se nao conseguir fazer as outras é só avisar.
Abraços!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}