• Anúncio Global
    Respostas
    Exibições
    Última mensagem

matrizes

matrizes

Mensagempor Abner » Sex Abr 22, 2011 21:36

Considere um ponto no plano cartesiano dado pelo par ordenado P = (x, y) e vamos associar a esse ponto um vetor como sendo o segmento orientado que sai da origem (0, 0) até o ponto (x, y) e seja representado pela matriz coluna v=[x, y] . Seja uma matriz genérica A =[a b;c d] . Dizemos que a matriz A efetua uma transformação sobre o vetor v pela ação do produto.


1. Escreva o resultado do produto Av.


2. Mostre o resultado da transformação de A aos pontos (1, 0) e (0, 1)


3. Descreva em palavras, que tipo de transformação em pontos do plano a matriz A pode efetuar se c = 0 = b, a = 1 e d = 1. São quatro casos.

4. Descreva em palavras, que tipo de transformação em pontos do plano a matriz A pode efetuar se a = 0 = d, c = 1 e b =1 . São quatro casos.

Na item 1 fiz a multiplicação de linhas por colunas e obtive A=[ax+by;cx+dy] não sei se está certo....
Agora no item 2 estou em duvida se é para substituir a matriz A pelos pontos (1,0) e (0,1)???? e tb no item 3 e 4???se puderem me dar alguma explicação de como fazer agradeço....
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: matrizes

Mensagempor LuizAquino » Sáb Abr 23, 2011 09:23

1. Escreva o resultado do produto Av.

Se A=\begin{bmatrix}a & b\\ c & d\end{bmatrix} e v=\begin{bmatrix}x \\ y\end{bmatrix}, então:

Av = \begin{bmatrix}a & b\\ c & d\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}ax+by \\ cx+dy\end{bmatrix}

2. Mostre o resultado da transformação de A aos pontos (1, 0) e (0, 1)

Basta substituir x=1 e y=0 em Av = \begin{bmatrix}ax+by \\ cx+dy\end{bmatrix}.

Faça o mesmo para x=0 e y=1.

3. Descreva em palavras, que tipo de transformação em pontos do plano a matriz A pode efetuar se c = 0 = b, a = 1 e d = 1. São quatro casos.

Lembre-se que se I é a matriz identidade, então Iv=v para qualquer v.

4. Descreva em palavras, que tipo de transformação em pontos do plano a matriz A pode efetuar se a = 0 = d, c = 1 e b =1 . São quatro casos.

Lembre-se que a reflexão do ponto (x, y) em relação a reta y=x é o ponto (y, x).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: matrizes

Mensagempor Abner » Sáb Abr 23, 2011 21:17

No item 2 para x=1 e y=0
então ira ficar( a c )e para x=0 e y=1 ficara( b d)?
Mas não entendi no item 3 e 4 porque sao quatro casos...desde ja agradeço pela colaboração....
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: matrizes

Mensagempor LuizAquino » Sáb Abr 23, 2011 21:32

No item 2 para x=1 e y=0, então ira ficar( a c ) e para x=0 e y=1 ficara( b d)?

Apenas organizando com a notação correta:
(a) se x=1 e y=0, então Av = \begin{bmatrix}a \\ c\end{bmatrix};

(b) se x=0 e y=1, então Av = \begin{bmatrix}b \\ d\end{bmatrix}.

Mas não entendi no item 3 e 4 porque sao quatro casos...

Na minha opinião o texto dos itens 3 e 4 está mal colocado, haja vista que fixando os valores como foi informado haverá um tipo de transformação em cada caso.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}