• Anúncio Global
    Respostas
    Exibições
    Última mensagem

escalonamento e não Cramer :s

escalonamento e não Cramer :s

Mensagempor Sofiaxavier » Sáb Nov 20, 2010 15:19

Olá,
Preciso de ajuda para essa conta, por cramer :


5x + 4y -2z = 0
x + 8y -2y= 0
2x + y -z = 0

Obrigada.


:arrow: POstei esse tópico pensando q o cálculo era por Cramer, mas é por Escolonamento. No entando na apostila o resultado da ({0,0,0}) também.

-Então tanto faz se é por Cramer ou Escalonamento?, quando se tem um sequências de 0's o sistema é impossível?? :?:
help me]
Editado pela última vez por Sofiaxavier em Dom Nov 21, 2010 11:20, em um total de 1 vez.
Sofiaxavier
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Set 18, 2010 19:24
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Regra de Cramer

Mensagempor Molina » Sáb Nov 20, 2010 20:11

Boa noite, Sofia.

Note que:

\begin{vmatrix}
   0 & 4 & -2 \\ 
   0 & 8 & -2 \\
   0 & 1 & -1 
\end{vmatrix}
=
\begin{vmatrix}
   5 & 0 & -2  \\ 
   1 & 0 & -2  \\
   2 & 0 & -1
\end{vmatrix}
=
\begin{vmatrix}
   5 & 4 & 0  \\ 
   1 & 8 & 0  \\
   2 & 1 & 0
\end{vmatrix}
=0

Ou seja, S=\{0,0,0\}
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Regra de Cramer

Mensagempor Sofiaxavier » Dom Nov 21, 2010 11:22

molina escreveu:Boa noite, Sofia.

Note que:

\begin{vmatrix}
   0 & 4 & -2 \\ 
   0 & 8 & -2 \\
   0 & 1 & -1 
\end{vmatrix}
=
\begin{vmatrix}
   5 & 0 & -2  \\ 
   1 & 0 & -2  \\
   2 & 0 & -1
\end{vmatrix}
=
\begin{vmatrix}
   5 & 4 & 0  \\ 
   1 & 8 & 0  \\
   2 & 1 & 0
\end{vmatrix}
=0

Ou seja, S=\{0,0,0\}




Ajude - me novamente [size=200]î[/size]
Sofiaxavier
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Set 18, 2010 19:24
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Regra de Cramer

Mensagempor Sofiaxavier » Dom Nov 21, 2010 11:23

1
Sofiaxavier
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Set 18, 2010 19:24
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: escalonamento e não Cramer :s

Mensagempor Molina » Dom Nov 21, 2010 19:20

Boa tarde, Sofia.

Os diferentes métodos tem que dar as mesmas soluções. Então fazendo por escalonamento você deverá encontrar S={0,0,0} também.

Quando se tem uma sequência de zeros o sistema não é impossível. Até mesmo porque no seu exemplo temos uma sequência de zeros e o sistema tem solução!

Um sistema será impossível (não tem solução), se \Delta=0 e \exists \Delta_{x,y,z} \neq 0.

Qualquer dúvida, informe! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59