• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ITA) DETERMINANTE

(ITA) DETERMINANTE

Mensagempor natanskt » Sáb Nov 20, 2010 10:26

considere a matriz A=\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4\\
1 & 4 & 9 & 16\\
1 & 8 & 27 & 64
\end{bmatrix}
a soma dos elemtentos da primeira coluna da matriz inversa A É:
a-)1
b-)2
c-)3
d-)4
e-)5

pessoal quando tem todos os elementos iguais na mesma fileira,o determinante é zero,e não se calcula inversa com determinante zero,estou certo?
o exercicio ta errado ou eu to viajandoO????
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ITA) DETERMINANTE

Mensagempor MarceloFantini » Sáb Nov 20, 2010 12:20

Você está viajando. Leia o enunciado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (ITA) DETERMINANTE

Mensagempor natanskt » Seg Nov 22, 2010 14:33

pode fazer pra mim ver?
pq aqui eu não intendo..
o exercicio pede a soma dos elementos da primeira coluna da matriz inversa A.
então quer dizer que essa já é a inversa.
soma dos elementos da 1 coluna. 1+1+1+1=4
isso não está certo,com o gabarito.

alguem me ajuda,que eu não consigo
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ITA) DETERMINANTE

Mensagempor MarceloFantini » Seg Nov 22, 2010 14:50

Deve haver um erro de digitação no enunciado, pois caso contrário a sua resposta estaria certa. Acredito que o enunciado seja "da matriz inversa de A". Procure então calcular a primeira coluna da matriz inversa de A e somar, não precisa encontrar a matriz inversa inteira.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (ITA) DETERMINANTE

Mensagempor vitall » Ter Jan 04, 2011 02:42

a resposta é 1

você nem precisa fazer realmente conta

sendo a primeira fileira abcd e a primeira coluna da inversa qwer

aq+bw+ce+dr=1
sendo que
a=b=c=d=1

q+w+e+r=1

e é essa a resposta
vitall
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 04, 2011 02:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.