• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz 3X3

Matriz 3X3

Mensagempor Colton » Seg Out 11, 2010 20:07

+
+

Aqui está um exercício que tem resistido há horas aos meus ataques:

Sem desenvolver, demonstre que o determinante da matriz 3X3

cos 0 - cos a - cos 2a
cos a - cos 2a - cos 3a
cos 2a - cos 3a - cos 4a

é nulo. Está claro que a11 = 1. Mas não consegui cercar o problema com as propriedades dos determinantes. Dando valor, p.ex. a = 30 graus, de fato o determinante é nulo, porém estou perdido que nem cachorro em dia de mudança para resolver isto sem desenvolver...

Tem alguém aí que possa me dar uma orientação?

Colton

+
+

P.S.

Hoje matutando sobre este problema consegui a resolução aplicando o Teorema de Cauchy "A soma dos produtos dos elementos de uma fila qualquer de uma matriz M, ordenadamente, pelos cofatores dos elementos de uma fial paralela, é igual a zero"

Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}