• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inversa de 3° Ordem

Inversa de 3° Ordem

Mensagempor DanielRJ » Sáb Set 11, 2010 15:34

Olá pessoal eu fiz uma questão do ITA e ela pede a soma dos elementos da inversa. Gostaria de saber se há algum atalho que eu possa ganhar tempo nesse tipo de questão, já que calcular a inversa da muito trabalho mas mesmo assim eu fiz do jeito tradicional e obtive resposta igual a 0.

(ITA) Seja a matriz 3x3 dada por\begin{pmatrix}
1 &2  &3 \\ 
 1&  0&0 \\ 
 3&0  &1 
\end{pmatrix} Sabendo que B é inversa de A, então a soma dos elementos de B vale?

A)1
B)2
C)5
D)0
E)-2
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inversa de 3° Ordem

Mensagempor Douglasm » Sáb Set 11, 2010 16:15

Na verdade, a resposta não é zero. Vou fazer do jeito tradicional:

-Determinando matriz dos cofatores (M):

M = \begin{vmatrix}{0 & -1 & 0 \\ -2 & -8 & 6 \\ 0 & 3 & - 2}\end{vmatrix}

Sabemos que a transposta dessa matriz é igual a matriz adjunta:

\overline{M} = \begin{vmatrix}{0 & -2 & 0 \\ -1 & -8 & 3 \\ 0 & 6 & - 2}\end{vmatrix}

Observando que o determinante de A é -2, temos que B, a inversa de A, é igual a:

B = A^{-1} = \frac{1}{\det A} . \overline{M} \;\therefore

B =  \frac{-1}{2} . \begin{vmatrix}{0 & -2 & 0 \\ -1 & -8 & 3 \\ 0 & 6 & - 2}\end{vmatrix}\;\therefore

B = \begin{vmatrix}{0 & 1 & 0 \\ \frac{1}{2} & 4 & \frac{-3}{2} \\ 0 & -3 & 1}\end{vmatrix}

A soma dos elementos de B é dado por:

4 + 1 + 1 + \frac{1}{2} - 3 - \frac{3}{2} = 2

A resposta é letra b.

Não creio que isso vá lhe dar uma grande vantagem, mas um outro jeito que existe para encontrar a inversa seria colocar ao lado da matriz a ser invertida, a matriz identidade e realizar os seguintes passos:

- Transformar a matriz a ser invertida na matriz identidade;
- Repetir na matriz identidade qualquer operação realizada na matriz supracitada.

Ex: Se você multiplicar a segunda linha por 2 e somar a primeira, repita a mesma coisa com a matriz identidade. No final das contas a matriz inicial se tornará a identidade e a identidade se tornará a inversa.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inversa de 3° Ordem

Mensagempor DanielRJ » Sáb Set 11, 2010 16:23

Pow valeu brigadão!! deu zero porque errei um misero sinal na adjunta esqueci de colocar.. mas de qualquer forma perdi o ponto. kkk valeu ae.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.