por aline2010 » Seg Jul 19, 2010 14:13
A, B e C são matrizes inversíveis de segunda ordem. Os determinantes de B e C^-1 valem respectivamente 3 e 6 e tem ainda que C=A.B. O determinante da matriz -A vale:
a)18
b)-18
c)-1/18
d)1/18
e)-2
-
aline2010
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Dom Jun 13, 2010 13:53
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: matmática
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Determinantes
por Cleyson007 » Dom Jul 20, 2008 11:55
- 1 Respostas
- 5110 Exibições
- Última mensagem por admin

Dom Jul 20, 2008 18:58
Matrizes e Determinantes
-
- determinantes..
por GABRIELA » Ter Set 15, 2009 20:12
- 2 Respostas
- 3793 Exibições
- Última mensagem por GABRIELA

Qui Set 17, 2009 18:13
Matrizes e Determinantes
-
- determinantes
por carolina camargo » Sáb Jul 10, 2010 18:03
- 1 Respostas
- 3042 Exibições
- Última mensagem por Molina

Dom Jul 11, 2010 15:21
Álgebra Elementar
-
- determinantes
por carolina camargo » Sáb Jul 10, 2010 18:08
- 1 Respostas
- 2858 Exibições
- Última mensagem por Tom

Sáb Jul 10, 2010 23:16
Álgebra Elementar
-
- Determinantes
por DanielRJ » Sex Set 10, 2010 22:27
- 2 Respostas
- 2064 Exibições
- Última mensagem por DanielRJ

Sáb Set 11, 2010 18:40
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.