• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Propriedades dos determinates

Propriedades dos determinates

Mensagempor panicox » Sex Set 14, 2018 02:31

como fasso para calcula esta matriz 4x4
Anexos
15368993185801475561949.jpg
como fasso pois não entendi e nada ajuda por favor so quero ajuda para aprende a faze não as respostas
panicox
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 14, 2018 02:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Propriedades dos determinates

Mensagempor Gebe » Sex Set 14, 2018 11:15

Sendo cada elemento da matriz dado por a_{ij} onde "i" representa a linha desse elemento e "j" sua coluna, podemos calcular o det como segue:

1º: Escolha uma linha ou coluna da matriz. Dê preferencia por uma que tenha mais 0's, pois irá facilitar os calculos.
2º: Calcular os cofatores dos elementos da linha/coluna selecionada.

O cofator de um elemento é dado por: A_{ij} = (-1)^{i+j} * D_{ij}
D_{ij} é o determinante da matriz inicial após eliminarmos tanto a coluna quanto a linha das quais o elemento a_{ij} pertence.

3º: Tendo os cofatores de cada um dos elementos da linha/coluna selecionada poderemos calcular o det. O determinante é dado somando cada cofator multiplicado por seu respectivo elemento.

Parece complicado, mas pelo exemplo fica bem facil:

a) Vamos escolher a coluna 2.
Vamos ter que calcular os cofatores dos elementos: a_{12} = 2, a_{22} = 6, a_{32} = -5, a_{42} = -3

-> A_{12}:
1.png


A_{12} = (-1)^{1+2} * (151) = -151

-> A_{22}:
2.png


A_{22} = (-1)^{2+2} * (187) = 187

-> A_{32}:
3.png


A_{32} = (-1)^{3+2} * (160) = -160

-> A_{42}:
4.png


A_{42} = (-1)^{4+2} * (140) = 140

Agora podemos calcular o determiannte:
Det = a_{12}*A_{12} + a_{22}*A_{22} + a_{32}*A_{32} + a_{42}*A_{42}

Det = 2*(-151) + 6*187 + (-5)*(-160) + (-3)*140

Det = 1200

As outras seguem da mesma forma.
Espero ter ajudado, qualquer duvida deixe msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Propriedades dos determinates

Mensagempor panicox » Sex Set 14, 2018 13:08

por que o A22 da 187 meu deu 177 ja fiz varias vez não sei si eu errei na regra de sarrus, vlw ajudou muito mermo
panicox
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 14, 2018 02:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Propriedades dos determinates

Mensagempor Gebe » Sex Set 14, 2018 13:46

D22 = (7*5*11 + 2*4*-4 + 2*-3*8) - (-4*5*2 + 8*4*7 + 11*-3*2)

D22 = (385 - 32 - 48) - (-40 + 224 -66)

D22 = (305) - (118)

D22 = 187
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee:


cron