• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Propriedades dos determinates

Propriedades dos determinates

Mensagempor panicox » Sex Set 14, 2018 02:31

como fasso para calcula esta matriz 4x4
Anexos
15368993185801475561949.jpg
como fasso pois não entendi e nada ajuda por favor so quero ajuda para aprende a faze não as respostas
panicox
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 14, 2018 02:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Propriedades dos determinates

Mensagempor Gebe » Sex Set 14, 2018 11:15

Sendo cada elemento da matriz dado por a_{ij} onde "i" representa a linha desse elemento e "j" sua coluna, podemos calcular o det como segue:

1º: Escolha uma linha ou coluna da matriz. Dê preferencia por uma que tenha mais 0's, pois irá facilitar os calculos.
2º: Calcular os cofatores dos elementos da linha/coluna selecionada.

O cofator de um elemento é dado por: A_{ij} = (-1)^{i+j} * D_{ij}
D_{ij} é o determinante da matriz inicial após eliminarmos tanto a coluna quanto a linha das quais o elemento a_{ij} pertence.

3º: Tendo os cofatores de cada um dos elementos da linha/coluna selecionada poderemos calcular o det. O determinante é dado somando cada cofator multiplicado por seu respectivo elemento.

Parece complicado, mas pelo exemplo fica bem facil:

a) Vamos escolher a coluna 2.
Vamos ter que calcular os cofatores dos elementos: a_{12} = 2, a_{22} = 6, a_{32} = -5, a_{42} = -3

-> A_{12}:
1.png


A_{12} = (-1)^{1+2} * (151) = -151

-> A_{22}:
2.png


A_{22} = (-1)^{2+2} * (187) = 187

-> A_{32}:
3.png


A_{32} = (-1)^{3+2} * (160) = -160

-> A_{42}:
4.png


A_{42} = (-1)^{4+2} * (140) = 140

Agora podemos calcular o determiannte:
Det = a_{12}*A_{12} + a_{22}*A_{22} + a_{32}*A_{32} + a_{42}*A_{42}

Det = 2*(-151) + 6*187 + (-5)*(-160) + (-3)*140

Det = 1200

As outras seguem da mesma forma.
Espero ter ajudado, qualquer duvida deixe msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Propriedades dos determinates

Mensagempor panicox » Sex Set 14, 2018 13:08

por que o A22 da 187 meu deu 177 ja fiz varias vez não sei si eu errei na regra de sarrus, vlw ajudou muito mermo
panicox
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 14, 2018 02:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Propriedades dos determinates

Mensagempor Gebe » Sex Set 14, 2018 13:46

D22 = (7*5*11 + 2*4*-4 + 2*-3*8) - (-4*5*2 + 8*4*7 + 11*-3*2)

D22 = (385 - 32 - 48) - (-40 + 224 -66)

D22 = (305) - (118)

D22 = 187
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?