• Anúncio Global
    Respostas
    Exibições
    Última mensagem

determinante

determinante

Mensagempor ezidia51 » Dom Mar 25, 2018 21:06

Alguém pode conferir se está certo?

Determine os valores de \mu\in\Repara os quais det (A-\muI)=0 sendo A=\begin{vmatrix}
 2 & 1 \\ 
  0 & 1 
\end{vmatrix}

e I=\begin{vmatrix}
   1& 0  \\ 
   0 & 1 
\end{vmatrix}
a matriz identidade



det=2-1-0 =1
ezidia51
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: determinante

Mensagempor Gebe » Dom Mar 25, 2018 21:57

A resposta certa é \mu=2\:ou\:\mu=1. Pode assumir os dois valores para que det(A-\mu I)=0 seja atendido. Abaixo segue a resolução.

det\left(A- \mu I \right)=0

det\left(
\begin{pmatrix}
   2 & 1  \\ 
   0 & 1 
\end{pmatrix}
- \mu * 
\begin{pmatrix}
   1 & 0  \\ 
   0 & 1 
\end{pmatrix}
 \right)=0

det\left(
\begin{pmatrix}
   2 & 1  \\ 
   0 & 1 
\end{pmatrix}
- 
\begin{pmatrix}
   \mu & 0  \\ 
   0 & \mu 
\end{pmatrix}
 \right)=0

det
\begin{pmatrix}
   2-\mu & 1-0  \\ 
   0-0 & 1-\mu 
\end{pmatrix}
=0

(2-\mu)*(1-\mu) - (1-0)*(0)
=0

2*1 - 2*\mu -\mu*1 + \mu^2
=0

\mu^2 -3\mu+2
=0

Resolvendo a equação de 2° grau chegamos as duas respostas \mu=2\:\,\:e\:\,\:\mu=1. Nao coloquei a resolução da eq. de 2° grau, mas se precisar é so mandar msg.
Espero ter ajudado, bons estudos.
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 97
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: determinante

Mensagempor ezidia51 » Dom Mar 25, 2018 22:06

Muito muito obrigado mesmo!!!Você poderia me enviar a resolução com final com a fórmula para eu saber como vc chegou ao resultado das raízes?Desde já lhe agradeço muito!!
ezidia51
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: determinante

Mensagempor Gebe » Dom Mar 25, 2018 22:21

Aplicando a formula de Bhaskara na eq \mu^2-3\mu+2=0 temos:

\mu=\frac{-b\pm\sqrt[2]{\Delta}}{2a}

\Delta=(-3)^2-4*1*2

\Delta=9-8

\Delta=1

\mu=\frac{-(-3)\pm\sqrt[2]{1}}{2*1}

\mu=\frac{3\pm1}{2}

{\mu}^{,}=\frac{3+1}{2}=2\\

{\mu}^{,,}=\frac{3-1}{2}=1\\

Qualquer duvida pode mandar msg. Bons estudos.
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 97
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: determinante

Mensagempor ezidia51 » Dom Mar 25, 2018 23:47

Um super muito obrigado!!!Vc me ajudou muito!!! :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.