• Anúncio Global
    Respostas
    Exibições
    Última mensagem

determinante

determinante

Mensagempor ezidia51 » Dom Mar 25, 2018 21:06

Alguém pode conferir se está certo?

Determine os valores de \mu\in\Repara os quais det (A-\muI)=0 sendo A=\begin{vmatrix}
 2 & 1 \\ 
  0 & 1 
\end{vmatrix}

e I=\begin{vmatrix}
   1& 0  \\ 
   0 & 1 
\end{vmatrix}
a matriz identidade



det=2-1-0 =1
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: determinante

Mensagempor Gebe » Dom Mar 25, 2018 21:57

A resposta certa é \mu=2\:ou\:\mu=1. Pode assumir os dois valores para que det(A-\mu I)=0 seja atendido. Abaixo segue a resolução.

det\left(A- \mu I \right)=0

det\left(
\begin{pmatrix}
   2 & 1  \\ 
   0 & 1 
\end{pmatrix}
- \mu * 
\begin{pmatrix}
   1 & 0  \\ 
   0 & 1 
\end{pmatrix}
 \right)=0

det\left(
\begin{pmatrix}
   2 & 1  \\ 
   0 & 1 
\end{pmatrix}
- 
\begin{pmatrix}
   \mu & 0  \\ 
   0 & \mu 
\end{pmatrix}
 \right)=0

det
\begin{pmatrix}
   2-\mu & 1-0  \\ 
   0-0 & 1-\mu 
\end{pmatrix}
=0

(2-\mu)*(1-\mu) - (1-0)*(0)
=0

2*1 - 2*\mu -\mu*1 + \mu^2
=0

\mu^2 -3\mu+2
=0

Resolvendo a equação de 2° grau chegamos as duas respostas \mu=2\:\,\:e\:\,\:\mu=1. Nao coloquei a resolução da eq. de 2° grau, mas se precisar é so mandar msg.
Espero ter ajudado, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: determinante

Mensagempor ezidia51 » Dom Mar 25, 2018 22:06

Muito muito obrigado mesmo!!!Você poderia me enviar a resolução com final com a fórmula para eu saber como vc chegou ao resultado das raízes?Desde já lhe agradeço muito!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: determinante

Mensagempor Gebe » Dom Mar 25, 2018 22:21

Aplicando a formula de Bhaskara na eq \mu^2-3\mu+2=0 temos:

\mu=\frac{-b\pm\sqrt[2]{\Delta}}{2a}

\Delta=(-3)^2-4*1*2

\Delta=9-8

\Delta=1

\mu=\frac{-(-3)\pm\sqrt[2]{1}}{2*1}

\mu=\frac{3\pm1}{2}

{\mu}^{,}=\frac{3+1}{2}=2\\

{\mu}^{,,}=\frac{3-1}{2}=1\\

Qualquer duvida pode mandar msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: determinante

Mensagempor ezidia51 » Dom Mar 25, 2018 23:47

Um super muito obrigado!!!Vc me ajudou muito!!! :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.