• Anúncio Global
    Respostas
    Exibições
    Última mensagem

matriz inversa e determinante

matriz inversa e determinante

Mensagempor ezidia51 » Sex Mar 23, 2018 17:10

Gostaria só de saber se este cálculo está correto.Obrigado
Determine a matriz inversa de A=\begin{pmatrix}
   2 & 1  \\ 
   4 & 0
\end{pmatrix}=[tex]
\begin{pmatrix}
   a & b  \\ 
   c & d 
\end{pmatrix}{}^{-1} =\begin{pmatrix}
   2 & 1 \\ 
   4 & 0
\end{pmatrix}{}^{-1}=[Unparseable or potentially dangerous latex formula. Error 6 ]
-4 & 2
\end{pmatrix}
[/tex]


Determine os valores de \mu\in\Repara os quais det(A-\mu(A-\mu\I)=0 sendo A=[tex] \begin{pmatrix}
   2 & 1 \\ 
   0 & 1 
\end{pmatrix} e
I=\begin{pmatrix}
   1 & 0 \\ 
   0 & 1 
\end{pmatrix}\begin{pmatrix}
   1 & 0 \\ 
   0 & 1 
\end{pmatrix} a matriz identidade.
Minha resolução:
\begin{pmatrix}
   2 & 1 \\ 
   0 & 1 
\end{pmatrix}-\begin{pmatrix}
  1 & 0 \\ 
   0 & 1 
\end{pmatrix}\begin{pmatrix}
  1 & 0 \\ 
   0 & 1 
\end{pmatrix}=\begin{pmatrix}
  1 & 0 \\ 
   0 & 1 
\end{pmatrix}\begin{pmatrix}
   1 & 1 \\ 
   0 & 0 
\end{pmatrix}
ezidia51
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.