• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Acho que isso e matriz D:

Acho que isso e matriz D:

Mensagempor Luizmatheusbr » Qua Mar 14, 2018 22:47

Alguem sabe a resposta dessas 2 fotos ai
pra segunda feira o mais rapido possível galera plz
Anexos
IMG_20180314_211353.jpg
IMG_20180314_211326.jpg
Luizmatheusbr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 14, 2018 22:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matematica
Andamento: cursando

Re: Acho que isso e matriz D:

Mensagempor Gebe » Qui Mar 15, 2018 00:11

Ola, vou responder abaixo as questões, no entanto aconselho a tomar tempo pra revisa-los e principalmente entende-los, afinal muito provavelmente tu vai ter prova e esse é um assunto simples.

Antes da resolução convém lembrar de como é feito multiplicação de matrizes, de uma matriz por um escalar (numero) e como achar a matriz transposta. Vou fazer isso com exemplos.

Matriz x Matriz: Só é possivel quando o numero de colunas da primeira é IGUAL ao numero de LINHAS da segunda. Fazemos a multiplicação linha (primeira matriz) vezes coluna (segunda matriz).
ex.: \begin{pmatrix}
   1 & 2  \\ 
   3 & 4 
\end{pmatrix}x
\begin{pmatrix}
   5 & 6  \\ 
   7 & 8 
\end{pmatrix} = 
\begin{pmatrix}
   1*5+2*7 & 1*6+2*8  \\ 
   3*5+4*7 & 3*6+4*8 
\end{pmatrix}=
\begin{pmatrix}
   19 & 22  \\ 
   43 & 50 
\end{pmatrix}

Matriz x escalar: Esta operação é mais simples, precisamos apenas multiplicar o escalar por cada elemento da matriz.
ex.: 5 *
\begin{pmatrix}
   1 & 2  \\ 
   3 & 4 
\end{pmatrix} = 
\begin{pmatrix}
   5*1 & 5*2  \\ 
   5*3 & 5*4 
\end{pmatrix}=
\begin{pmatrix}
   5 & 10  \\ 
   15 & 20 
\end{pmatrix}
Matriz transposta: Aqui só precisamos trocar linha por coluna (o que era linha vira coluna e vice-versa).
ex.: {
\begin{pmatrix}
   1 & 2  \\ 
   3 & 4 
\end{pmatrix}
}^{t}=
\begin{pmatrix}
   1 & 3  \\ 
   2 & 4 
\end{pmatrix}

Com isso, as questões:
1°)
a) \begin{pmatrix}
   1 & 8  \\ 
   -1 & -6 
\end{pmatrix}

b) \begin{pmatrix}
   6 & 9  \\ 
   3 & 6 
\end{pmatrix}

c) \begin{pmatrix}
   0 & 2  \\ 
   -2 & -8 
\end{pmatrix}

2°)
A) AB = \begin{pmatrix}
   17 & -2  \\ 
   -5 & 8 
\end{pmatrix}
B) AA = \begin{pmatrix}
   -19 & 10  \\ 
   -8 & -19 
\end{pmatrix}
C) AB+BC = \begin{pmatrix}
   21 & -10  \\ 
   -2 & 8 
\end{pmatrix}

Refaça os exercicios para conferir se não houve erros, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 133
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Acho que isso e matriz D:

Mensagempor Luizmatheusbr » Qui Mar 15, 2018 01:39

so nao entendi a matriz x matriz , o resto eu entendi
Luizmatheusbr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 14, 2018 22:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matematica
Andamento: cursando

Re: Acho que isso e matriz D:

Mensagempor Gebe » Qui Mar 15, 2018 03:30

Ok, vou tentar deixar mais detalhado. Vamos começar exemplificando melhor a questão da condição para a multiplicação.

Para que duas matrizes possam ser multiplicadas a primeira matriz deve ter o seu numero de colunas igual ao numero de linhas da outra. Vou dar dois exemplos de operações que NÃO podem ser realizadas:
ex1: \begin{pmatrix}
   2 & 5  \\ 
   9 & 6 
\end{pmatrix}x
\begin{pmatrix}
   4 & 5 & 8  \\ 
   0 & 1 & 3  \\
   7 & 2 & 5
\end{pmatrix} NAO pode ,pois a primeira tem 2 colunas e a segunda tem 3 linhas

ex2.: \begin{pmatrix}
   2 & 5  \\ 
   9 & 6  \\
   0 & 1 
\end{pmatrix}x
\begin{pmatrix}
   4 & 5 & 8  \\ 
   0 & 1 & 3  \\
   7 & 2 & 5
\end{pmatrix} NAO pode, pois a primeira tem 2 colunas e a segunda tem tres linhas.

Note com isso que a ordem da operação na multiplicação de matrizes é importante. No segundo exemplo se as matrizes tivessem trocado de lugar seria possivel de realizar a multiplicação, pois teriamos a primeira matriz com 3 colunas e a segunda com 3 linhas.

Agora para a multiplicação de fato, vamos considerar duas matrizes genericas uma A e outra B (matrizes abaixo). Perceba que as matrizes tem 4 elementos: a11, a12, a21 e a22 e b11, b12, b21 e b22. Estes indices como mostrado abaixo representam a linha e a coluna do elemento.
A=\begin{pmatrix}
   a11 & a12  \\ 
   a21 & a22 
\end{pmatrix}
B=\begin{pmatrix}
   b11 & b12  \\ 
   b21 & b22 
\end{pmatrix}

Dizemos que a multiplicação é feita linha por coluna, pois os elementos da matriz resultante serão calculados multiplicando a linha da primeira matriz pela coluna da segunda. Como neste caso explicar apenas com palavras fica dificil, vamos fazer o exemplo com essas genericas, sendo M a matriz resultante de AxB e m (minusculo) os elementos de M.

m11, elemento da linha1 e coluna 1 da matriz resultante é calculado pela multiplicação da linha1 da matriz A pela coluna 1 da matriz B, portanto:
m11 = a11*b11 + a12*b21

m12, elemento da linha1 e coluna 2 da matriz resultante é calculado pela multiplicação da linha1 da matriz A pela coluna 2 da matriz B, portanto:
m12 = a11*b12 + a12*b22

m21, elemento da linha2 e coluna 1 da matriz resultante é calculado pela multiplicação da linha2 da matriz A pela coluna 1 da matriz B, portanto:
m21 = a21*b11 + a22*b21

m22, elemento da linha2 e coluna 2 da matriz resultante é calculado pela multiplicação da linha2 da matriz A pela coluna 2 da matriz B, portanto:
m22 = a21*b21 + a22*b22

M = \begin{pmatrix}
   a11*b11 + a12*b21 & a11*b12 + a12*b22  \\ 
   a21*b11 + a22*b21 & a21*b21 + a22*b22 
\end{pmatrix}

Outro exemplo com numeros agora e diferentes dimensões:
\begin{pmatrix}
   1 & 2  \\ 
   3 & 4 
\end{pmatrix}x
\begin{pmatrix}
   5 & 6 & 2 \\ 
   7 & 8 & 4
\end{pmatrix}=\begin{pmatrix}
   1*5+2*7 & 1*6+2*8 & 1*2+2*4  \\ 
   3*5+4*7 & 3*6+4*8 & 3*2+4*4 
\end{pmatrix}=\begin{pmatrix}
   19 & 22 & 10  \\ 
   43 & 50 & 22
\end{pmatrix}

Por fim vale notar outro ponto interessante, a matriz resultante da multiplicação terá o mesmo numero de linhas da primeira e numero de colunas igual a da segunda.
Espero ter ajudado, se as duvidas continuarem ou se puder especificar qual ponto te causa mais confusão, volte a perguntar. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 133
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Acho que isso e matriz D:

Mensagempor Luizmatheusbr » Qui Mar 15, 2018 11:44

Gebe escreveu:Ok, vou tentar deixar mais detalhado. Vamos começar exemplificando melhor a questão da condição para a multiplicação.

Para que duas matrizes possam ser multiplicadas a primeira matriz deve ter o seu numero de colunas igual ao numero de linhas da outra. Vou dar dois exemplos de operações que NÃO podem ser realizadas:
ex1: \begin{pmatrix}
   2 & 5  \\ 
   9 & 6 
\end{pmatrix}x
\begin{pmatrix}
   4 & 5 & 8  \\ 
   0 & 1 & 3  \\
   7 & 2 & 5
\end{pmatrix} NAO pode ,pois a primeira tem 2 colunas e a segunda tem 3 linhas

ex2.: \begin{pmatrix}
   2 & 5  \\ 
   9 & 6  \\
   0 & 1 
\end{pmatrix}x
\begin{pmatrix}
   4 & 5 & 8  \\ 
   0 & 1 & 3  \\
   7 & 2 & 5
\end{pmatrix} NAO pode, pois a primeira tem 2 colunas e a segunda tem tres linhas.

Note com isso que a ordem da operação na multiplicação de matrizes é importante. No segundo exemplo se as matrizes tivessem trocado de lugar seria possivel de realizar a multiplicação, pois teriamos a primeira matriz com 3 colunas e a segunda com 3 linhas.

Agora para a multiplicação de fato, vamos considerar duas matrizes genericas uma A e outra B (matrizes abaixo). Perceba que as matrizes tem 4 elementos: a11, a12, a21 e a22 e b11, b12, b21 e b22. Estes indices como mostrado abaixo representam a linha e a coluna do elemento.
A=\begin{pmatrix}
   a11 & a12  \\ 
   a21 & a22 
\end{pmatrix}
B=\begin{pmatrix}
   b11 & b12  \\ 
   b21 & b22 
\end{pmatrix}

Dizemos que a multiplicação é feita linha por coluna, pois os elementos da matriz resultante serão calculados multiplicando a linha da primeira matriz pela coluna da segunda. Como neste caso explicar apenas com palavras fica dificil, vamos fazer o exemplo com essas genericas, sendo M a matriz resultante de AxB e m (minusculo) os elementos de M.

m11, elemento da linha1 e coluna 1 da matriz resultante é calculado pela multiplicação da linha1 da matriz A pela coluna 1 da matriz B, portanto:
m11 = a11*b11 + a12*b21

m12, elemento da linha1 e coluna 2 da matriz resultante é calculado pela multiplicação da linha1 da matriz A pela coluna 2 da matriz B, portanto:
m12 = a11*b12 + a12*b22

m21, elemento da linha2 e coluna 1 da matriz resultante é calculado pela multiplicação da linha2 da matriz A pela coluna 1 da matriz B, portanto:
m21 = a21*b11 + a22*b21

m22, elemento da linha2 e coluna 2 da matriz resultante é calculado pela multiplicação da linha2 da matriz A pela coluna 2 da matriz B, portanto:
m22 = a21*b21 + a22*b22

M = \begin{pmatrix}
   a11*b11 + a12*b21 & a11*b12 + a12*b22  \\ 
   a21*b11 + a22*b21 & a21*b21 + a22*b22 
\end{pmatrix}

Outro exemplo com numeros agora e diferentes dimensões:
\begin{pmatrix}
   1 & 2  \\ 
   3 & 4 
\end{pmatrix}x
\begin{pmatrix}
   5 & 6 & 2 \\ 
   7 & 8 & 4
\end{pmatrix}=\begin{pmatrix}
   1*5+2*7 & 1*6+2*8 & 1*2+2*4  \\ 
   3*5+4*7 & 3*6+4*8 & 3*2+4*4 
\end{pmatrix}=\begin{pmatrix}
   19 & 22 & 10  \\ 
   43 & 50 & 22
\end{pmatrix}

Por fim vale notar outro ponto interessante, a matriz resultante da multiplicação terá o mesmo numero de linhas da primeira e numero de colunas igual a da segunda.
Espero ter ajudado, se as duvidas continuarem ou se puder especificar qual ponto te causa mais confusão, volte a perguntar. Bons estudos.
como e o nome desse assunto do matriz x matriz? e esse mesmo? tem como me passa um video tutorial para que eu veja, porque eu posso estar vendo um tutorial errado se eu mesmo pesquisa
Luizmatheusbr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 14, 2018 22:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matematica
Andamento: cursando

Re: Acho que isso e matriz D:

Mensagempor Gebe » Qui Mar 15, 2018 16:41

Achei esse aqui https://www.youtube.com/watch?v=oYVBWG0wkoc
Eventualmente o youtube pode te sugerir videos semelhantes/relacionados caso tu não goste desse.

Há também um canal focado em ensino muito bom e didatico, o nome é MeSalva (youtube). Não procurei este assunto la, mas provavelmente deve ter tambem.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 133
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Acho que isso e matriz D:

Mensagempor Luizmatheusbr » Seg Mar 19, 2018 18:28

Gebe escreveu:Achei esse aqui https://www.youtube.com/watch?v=oYVBWG0wkoc
Eventualmente o youtube pode te sugerir videos semelhantes/relacionados caso tu não goste desse.

Há também um canal focado em ensino muito bom e didatico, o nome é MeSalva (youtube). Não procurei este assunto la, mas provavelmente deve ter tambem.

o fera tem como voce me passar os calculos dessas matriz das duas foto ?
pq a professora queria com calculo D:
Luizmatheusbr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 14, 2018 22:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matematica
Andamento: cursando

Re: Acho que isso e matriz D:

Mensagempor Luizmatheusbr » Seg Mar 19, 2018 20:55

Gebe escreveu:Achei esse aqui https://www.youtube.com/watch?v=oYVBWG0wkoc
Eventualmente o youtube pode te sugerir videos semelhantes/relacionados caso tu não goste desse.

Há também um canal focado em ensino muito bom e didatico, o nome é MeSalva (youtube). Não procurei este assunto la, mas provavelmente deve ter tambem.

pls
Luizmatheusbr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 14, 2018 22:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matematica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.