• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[MATRIZES]

[MATRIZES]

Mensagempor anselmojr97 » Seg Ago 15, 2016 22:33

Olá, pessoal. Estou respondendo umas questões sobre matrizes, para dá uma revisada no assunto. Me deparei com essa questão, mas não consegui resolvê-la.
Peço a ajuda de vocês, se possível.
Eis a questão:

"Calcular todas as matrizex X, quadradas de ordem 2, tais que: X^{2}=X ."

Desde já agradeço!



" Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim) "
anselmojr97
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Set 17, 2015 21:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [MATRIZES]

Mensagempor danielneiva » Ter Ago 16, 2016 23:03

Não entendi muito bem o que a questão pede... Mas os únicos números que cabem em x²=x são 0 e 1.
danielneiva
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Ago 16, 2016 22:11
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [MATRIZES]

Mensagempor anselmojr97 » Qua Ago 17, 2016 22:44

Oi, danielneiva. Nesse caso a resposta não é com números, mas sim com matrizes. Acho que tem usar matrizes genéricas ou coisa do tipo. Mas não sei como desenvolver. Mas obrigado por a resposta. Valeu!




" Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim) "
anselmojr97
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Set 17, 2015 21:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [MATRIZES]

Mensagempor adauto martins » Sex Ago 19, 2016 11:10

a matriz X deve ser quadrada e inversivel,o q. nao foi dado no enunciado,logo:
{X}^{2}=X.X=X\Rightarrow (X.X).{X}^{-1}=X.{X}^{-1}=I\Rightarrow X.(X.{X}^{-1})=I\Rightarrow X=I=
\begin{pmatrix}
   1 & 0  \\ 
   0 & 1 
\end{pmatrix}...logo o espaço-soluçao sera:
X={a.I/a\in \Re}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 663
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.