• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[MATRIZES] Valores Próprios com incógnita

[MATRIZES] Valores Próprios com incógnita

Mensagempor METEOS » Sex Nov 27, 2015 19:49

Boa noite,

Necessito de resolver um exercício de uma matéria mais recente que tenho vindo a dar, mas que ainda não sei bem.
Como posso resolve-lo?
Imagem

Quem não conseguir ver a imagem, o exercicio é:
"Diga para que valores de b pertence a R a matriz A =  [primeira linha: 1 -1 segunda linha: b 1]  tem dois valores próprios."

Obrigado.
METEOS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 30, 2013 17:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Ciencias
Andamento: cursando

Re: [MATRIZES] Valores Próprios com incógnita

Mensagempor METEOS » Sex Nov 27, 2015 20:45

Começei a dar esta matéria à pouco tempo.
Era muito bom se me pudessem ajudar, porque não encontro informações úteis que me ajudem e não faço
ideia de como posso responder.
Obrigado
METEOS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 30, 2013 17:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Ciencias
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}