• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Escalonamento?

Escalonamento?

Mensagempor zjmnow » Qui Ago 27, 2015 16:58

O sistema abaixo:
5x+3y-11z=13
4x-5y+4z=18
9x-2y-7z=25?
a) só apresenta a solução trivial;
b) é possível e determinado não tendo solução trivial;
c) é possível e indeterminado;
d) é impossível;
e) admite a solução (1; 2; 1)
zjmnow
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Ago 27, 2015 16:53
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Escalonamento?

Mensagempor nakagumahissao » Qui Set 10, 2015 22:25

Resposta é b:


Possível, determinado e não possui a solução trivial.

Não possui a solução trivial (basta substituir x = 0, y=0 e z =0 e verá que não satisfaz o sistema)

Det(Matriz) = 0, mas os outros determinantes são diferentes de zero. Assim, é possível e determinado.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 377
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}