• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinantes

Determinantes

Mensagempor Souo » Qua Abr 22, 2015 12:05

O determinante da matriz \left[\begin{array}{cccc} _{m+5} & _{m+3} \\ _{3m+10} & _{5m+6}\\\end{array}\right] é nulo para m igual a:

A) -6 ou 0
B) -2 ou 1
C) -2 ou 2
D) 0 ou 6
E) 0 ou 2



No gabarito a resposta certa esta como letra A, mas cheguei em outra resposta alguém poderia me explicar?
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinantes

Mensagempor DanielFerreira » Qui Abr 23, 2015 15:41

\\ \Delta = (m + 5) \cdot (5m + 6) - (m + 3) \cdot (3m + 10) \\\\ 0 = 5m^2 + 6m + 25m + 30 - (3m^2 + 10m + 9m + 30) \\\\ 5m^2 - 3m^2 + 31m - 19m + 30 - 30 = 0 \\\\ 2m^2 + 12m = 0 \\\\ ...

Souo, encontre as raízes da equação e terá a resposta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Determinantes

Mensagempor Souo » Qui Abr 23, 2015 22:57

Só uma duvida, é 5m {}^2 {} pq esta multiplicando né, se fosse somado seria 6m?
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinantes

Mensagempor Souo » Qui Abr 23, 2015 23:05

Pra encontrar as raízes preciso fazer por Bhaskara, ou tem outro jeito?
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinantes

Mensagempor DanielFerreira » Sex Abr 24, 2015 21:11

Souo escreveu:Só uma duvida, é 5m {}^2 {} pq esta multiplicando né, se fosse somado seria 6m?


Isso!

Souo escreveu:Pra encontrar as raízes preciso fazer por Bhaskara, ou tem outro jeito?


Existem outras formas, entretanto, se não estiveres familiarizado com Bhaskara, sugiro que encontre as raízes aplicando tal método.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59