• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinantes

Determinantes

Mensagempor Souo » Qui Abr 16, 2015 23:25

Se o determinante de uma matriz quadrada A, de ordem 3, é 5, entāo o determinante da matriz 4A é igual a:


A )320
B) 100
C) 60
D) 15
E) 5


Alguém poderia me explicar, não estou conseguindo entender.
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinantes

Mensagempor Cleyson007 » Sex Abr 17, 2015 08:48

Olá!

det(4A) = 4³ (det A) = 4³(5) = 320

Qualquer dúvida estou a disposição.

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Determinantes

Mensagempor Souo » Qua Abr 22, 2015 11:58

Obrigado!
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.