• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinantes

Determinantes

Mensagempor Souo » Qui Abr 16, 2015 23:18

Sabendo que M é uma matriz quadrada de ordem 2 e det M=5, entāo det (5M) é igual a:

A) 5
B) 10
C) 25
D) 50
E) 125


Alguém poderia me explicar?
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinantes

Mensagempor DanielFerreira » Sáb Jun 27, 2015 16:23

\\ M = \begin{bmatrix}m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \\\\ \text{det} (M) = m_{11} \cdot m_{22} - m_{21} \cdot m_{12} \\\\ \boxed{m_{11} \cdot m_{22} - m_{21} \cdot m_{12} = 5}

Portanto,

\\ 5 \cdot M = 5 \cdot \begin{bmatrix}m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \\\\ 5M = \begin{bmatrix}5m_{11} & 5m_{12} \\ 5m_{21} & 5m_{22} \end{bmatrix} \\\\ \text{det} (5M) = 5m_{11} \cdot 5m_{22} - 5m_{21} \cdot 5m_{12} \\\\ \text{det} (5M) = 25m_{11} \cdot m_{22} - 25m_{21} \cdot m_{12} \\\\ \text{det} (5M) = 25(m_{11} \cdot m_{22} - m_{21} \cdot m_{12}) \\\\ \text{det} (5M) = 25 \cdot 5 \\\\ \boxed{\boxed{\text{det} (5M) = 125}}

Poderia, também, ter aplicado uma das propriedades de determinantes...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}