• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinantes

Determinantes

Mensagempor Souo » Qui Abr 16, 2015 23:18

Sabendo que M é uma matriz quadrada de ordem 2 e det M=5, entāo det (5M) é igual a:

A) 5
B) 10
C) 25
D) 50
E) 125


Alguém poderia me explicar?
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determinantes

Mensagempor DanielFerreira » Sáb Jun 27, 2015 16:23

\\ M = \begin{bmatrix}m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \\\\ \text{det} (M) = m_{11} \cdot m_{22} - m_{21} \cdot m_{12} \\\\ \boxed{m_{11} \cdot m_{22} - m_{21} \cdot m_{12} = 5}

Portanto,

\\ 5 \cdot M = 5 \cdot \begin{bmatrix}m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \\\\ 5M = \begin{bmatrix}5m_{11} & 5m_{12} \\ 5m_{21} & 5m_{22} \end{bmatrix} \\\\ \text{det} (5M) = 5m_{11} \cdot 5m_{22} - 5m_{21} \cdot 5m_{12} \\\\ \text{det} (5M) = 25m_{11} \cdot m_{22} - 25m_{21} \cdot m_{12} \\\\ \text{det} (5M) = 25(m_{11} \cdot m_{22} - m_{21} \cdot m_{12}) \\\\ \text{det} (5M) = 25 \cdot 5 \\\\ \boxed{\boxed{\text{det} (5M) = 125}}

Poderia, também, ter aplicado uma das propriedades de determinantes...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1630
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.