• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações matriciais - Resolver em ordem a X

Equações matriciais - Resolver em ordem a X

Mensagempor jmarquesk » Qui Jan 15, 2015 07:39

Tenho que resolver em ordem a X a equação [A X^t B^-1]t = (A B^t)^-1
Da forma como isolei X fiquei com um lado direito "impossivel" de resolver. Alguem me pode ajudar? Obrigado
jmarquesk
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jan 15, 2015 07:27
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia informatica
Andamento: formado

Re: Equações matriciais - Resolver em ordem a X

Mensagempor DanielFerreira » Dom Jun 07, 2015 23:30

\\ (A \cdot x^t \cdot B^{- 1})^t = (A \cdot B^t)^{- 1} \\\\ (B^{- 1})^t \cdot (x^t)^t \cdot A^t = (B^t)^{- 1} \cdot A^{- 1} \\\\ \text{se B} \; \acute{e} \; n\tilde{a}o \; \text{singular}, ent\tilde{a}o \; (B^{- 1})^t = (B^t)^{- 1}. \\\\ (B^t)^{- 1} \cdot x \cdot A^t = (B^t)^{- 1} \cdot A^{- 1} \;\; \times(B^t \\\\ \underbrace{B^t \cdot (B^t)^{- 1}}_{I} \cdot x \cdot A^t = \underbrace{B^t \cdot (B^t)^{- 1}}_{I} \cdot A^{- 1} \\\\ I \cdot x \cdot A^t = I \cdot A^{- 1} \\\\ x \cdot A^t = A^{- 1} \;\; \times(A^t)^{- 1} \\\\ x \cdot \underbrace{A^t \cdot (A^t)^{- 1}}_{I} = A^{- 1} \cdot (A^t)^{- 1} \\\\ x \cdot I = A^{- 1} \cdot (A^t)^{- 1} \\\\ \boxed{x = (A^t \cdot A)^{- 1}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1678
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.