• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações matriciais - Resolver em ordem a X

Equações matriciais - Resolver em ordem a X

Mensagempor jmarquesk » Qui Jan 15, 2015 07:39

Tenho que resolver em ordem a X a equação [A X^t B^-1]t = (A B^t)^-1
Da forma como isolei X fiquei com um lado direito "impossivel" de resolver. Alguem me pode ajudar? Obrigado
jmarquesk
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jan 15, 2015 07:27
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia informatica
Andamento: formado

Re: Equações matriciais - Resolver em ordem a X

Mensagempor DanielFerreira » Dom Jun 07, 2015 23:30

\\ (A \cdot x^t \cdot B^{- 1})^t = (A \cdot B^t)^{- 1} \\\\ (B^{- 1})^t \cdot (x^t)^t \cdot A^t = (B^t)^{- 1} \cdot A^{- 1} \\\\ \text{se B} \; \acute{e} \; n\tilde{a}o \; \text{singular}, ent\tilde{a}o \; (B^{- 1})^t = (B^t)^{- 1}. \\\\ (B^t)^{- 1} \cdot x \cdot A^t = (B^t)^{- 1} \cdot A^{- 1} \;\; \times(B^t \\\\ \underbrace{B^t \cdot (B^t)^{- 1}}_{I} \cdot x \cdot A^t = \underbrace{B^t \cdot (B^t)^{- 1}}_{I} \cdot A^{- 1} \\\\ I \cdot x \cdot A^t = I \cdot A^{- 1} \\\\ x \cdot A^t = A^{- 1} \;\; \times(A^t)^{- 1} \\\\ x \cdot \underbrace{A^t \cdot (A^t)^{- 1}}_{I} = A^{- 1} \cdot (A^t)^{- 1} \\\\ x \cdot I = A^{- 1} \cdot (A^t)^{- 1} \\\\ \boxed{x = (A^t \cdot A)^{- 1}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.