• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações matriciais - Resolver em ordem a X

Equações matriciais - Resolver em ordem a X

Mensagempor jmarquesk » Qui Jan 15, 2015 07:39

Tenho que resolver em ordem a X a equação [A X^t B^-1]t = (A B^t)^-1
Da forma como isolei X fiquei com um lado direito "impossivel" de resolver. Alguem me pode ajudar? Obrigado
jmarquesk
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jan 15, 2015 07:27
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia informatica
Andamento: formado

Re: Equações matriciais - Resolver em ordem a X

Mensagempor DanielFerreira » Dom Jun 07, 2015 23:30

\\ (A \cdot x^t \cdot B^{- 1})^t = (A \cdot B^t)^{- 1} \\\\ (B^{- 1})^t \cdot (x^t)^t \cdot A^t = (B^t)^{- 1} \cdot A^{- 1} \\\\ \text{se B} \; \acute{e} \; n\tilde{a}o \; \text{singular}, ent\tilde{a}o \; (B^{- 1})^t = (B^t)^{- 1}. \\\\ (B^t)^{- 1} \cdot x \cdot A^t = (B^t)^{- 1} \cdot A^{- 1} \;\; \times(B^t \\\\ \underbrace{B^t \cdot (B^t)^{- 1}}_{I} \cdot x \cdot A^t = \underbrace{B^t \cdot (B^t)^{- 1}}_{I} \cdot A^{- 1} \\\\ I \cdot x \cdot A^t = I \cdot A^{- 1} \\\\ x \cdot A^t = A^{- 1} \;\; \times(A^t)^{- 1} \\\\ x \cdot \underbrace{A^t \cdot (A^t)^{- 1}}_{I} = A^{- 1} \cdot (A^t)^{- 1} \\\\ x \cdot I = A^{- 1} \cdot (A^t)^{- 1} \\\\ \boxed{x = (A^t \cdot A)^{- 1}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.