• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matrizes] Verificação de afirmação e prova

[Matrizes] Verificação de afirmação e prova

Mensagempor Andre Arruda » Ter Mar 25, 2014 16:55

Olá! Estava olhando provas anteriores de minha universidade e vi uma questão sobre matrizes que pedia para falar se algumas afirmativas feitas eram verdadeiras ou falsas com justificativa. Nessa afirmação:

"Se \textit{A} é uma matriz \textit{n} x \textit{n} tal que {\textit{A}}^{2}={I}_{n}, então A={I}_{n} ou A={-I}_{n}"

Bom, como uma matriz multiplicada pela sua inversa sempre dá a matriz identidade, imaginei que a afirmação seja falsa, uma vez que para que {\textit{A}}^{2}={I}_{n}, A={A}^{-1}.

Não sei, entretanto, como colocar isso na resposta caso apareça em uma prova (ou qualquer questão similar) e se teria que exemplificar com um caso numérico para prova. É meu primeiro semestre na universidade, então não tenho muita noção de como funciona isso. Se alguém puder ajudar com essa ideia, agradeço muito!
Andre Arruda
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mar 25, 2014 16:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: [Matrizes] Verificação de afirmação e prova

Mensagempor e8group » Qui Mar 27, 2014 12:32

Bom dia . A implicação não necessariamente é verdadeira . Se fosse , ela valeria para todo n natural .Negar a afirmação entre aspas é o suficiente mostrar um contra exemplo . Vamos escolher n = 2 para simplificar e mostra que existe outra matriz A inversível diferente de \pm I_2 tal que A^2 = I_2 .Comece escrevendo

A = \begin{pmatrix}  a & b \\ c &  d \end{pmatrix} (vamos determinar a,b,c,d ) . Segue-se

A^2 = A \cdot A =  \begin{pmatrix}  a & b \\ c &  d \end{pmatrix} \cdot \begin{pmatrix}  a & b \\ c &  d \end{pmatrix} = \begin{pmatrix}  a ^2 + bc   & (a+d)b  \\ c (a+d) &  cb +d^2  \end{pmatrix} .

Desde que A^2 = I_2 , então a^2 +bc = cb+d^2 = 1 e c(a+d) = b(a+d) = 0 .

Dá segunda relação ,temos a = -d e b,c quaisquer .

Mas , a^2 +bc = cb+d^2 = 1 \implies    d^2 =  1-cb . Como d^2 é sempre positivo , o lado direito também o é , escolhendo-se então c,b reais tais que cb <1 a solução geral do sistema será

a = - d  ,  d = \pm \sqrt{1-cb} com cb < 1 .

Agora podemos encontrar quantas matrizes quisermos , basta tomar valores para c,b de modo que cb < 1 . Exemplo , escolha c = 2 e b = 1/4 .Temos 2 \cdot 1/4 = 1/2 < 1 e

d = \pm \sqrt{1 - 1/2}  = \pm \sqrt{2}/2  , a = - d

Disso temos uma matriz A =  \begin{pmatrix}  \sqrt{2}/2  & 1/4  \\ 2 &  - \sqrt{2}/2 \end{pmatrix} tal que A^2 = I_2 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Matrizes] Verificação de afirmação e prova

Mensagempor Andre Arruda » Qui Mar 27, 2014 17:28

Certo, muito obrigado, Santhiago! Me ajudou bastante, acho que peguei a ideia de como justificar, vou treinar mais isso. Mais uma vez, muito obrigado.
Andre Arruda
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mar 25, 2014 16:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.


cron