• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ufop-MG - 2008 _Matrizes

Ufop-MG - 2008 _Matrizes

Mensagempor Debylow » Sex Out 18, 2013 20:46

Considere as matrizes:


A=\begin{pmatrix}    
   x & 4  \\ 
   -3 & x+7 
\end{pmatrix}

B=\begin{pmatrix}
   4x & -3  \\ 
   2 & 3
\end{pmatrix}

A)Para que valores reais de X tem-se det A>0 e det B>1
agradeço quem souber responder....
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Ufop-MG - 2008 _Matrizes

Mensagempor Pessoa Estranha » Sáb Out 19, 2013 11:35

Olá....

Bom, para encontrarmos o valor do determinante de uma matriz, precisamos aplicar algumas propriedades, regras. Neste caso, temos duas matrizes quadradas, ou seja, apresentam duas linhas e duas colunas cada uma. Assim, para calcular os seus determinantes, basta aplicarmos uma regra bastante simples e ao mesmo tempo "difícil" de ser demonstrada, o que não vem ao caso. Tal regra consiste em, no caso de ser uma matriz quadrada de ORDEM 2, subtrair os resultados das multiplicações entre os números da diagonal principal e entre os da diagonal secundária. Para ficar mais claro:

\begin{pmatrix}
   a & b  \\ 
   c & d 
\end{pmatrix} \Rightarrow 
\begin{vmatrix}
   a & b  \\ 
   c & d 
\end{vmatrix} = a.d - c.b

Agora, vamos ao caso do exercício em questão.

\begin{pmatrix}
    x & 4  \\ 
   -3 & x+7 
\end{pmatrix} \Rightarrow 
\begin{vmatrix}
    x & 4  \\ 
   -3 & x+7 
\end{vmatrix} = x(x+7)-[(-3).4]={x}^{2}+7x+12>0

\begin{pmatrix}
   4x & -3  \\ 
   2 & 3 
\end{pmatrix} \Rightarrow 
\begin{vmatrix}
   4x & -3  \\ 
   2 & 3 
\end{vmatrix} = 12x-(-6)=12x+6>1

Assim, para concluir, precisamos resolver as duas inequações e o valor de x será o seguinte:

{x}^{2}+7x+12>0 \rightarrow Basta encontrarmos as raízes da equação {x}^{2}+7x+12=0, observar o comportamento da sua curva, parábola que, neste caso, será voltada para cima, pois o coeficiente que acompanha {x}^{2} é positivo. Depois, precisamos analisar qual é o intervalo tal que os valores de x possuem imagem y positiva e quando possuem imagem y negativa. Então, obteremos o intervalo que satisfaz a inequação em questão.

Resolvendo a equação, aplicando a Fórmula de Bhaskara, temos:

\Delta=49-4(1)(12)=49-48=1

x1=\frac{-7+1}{2}=\frac{-6}{2}=-3

x2=\frac{-7-1}{2}=\frac{-8}{2}=-4

Então, as raízes da equação são -3 e -4. Contudo, seria melhor se conseguisse mostrar o comportamento da parábola através de um gráfico (tente fazer ou use GeoGebra ou qualquer outro programa que construa gráficos e ,então, ficará mais visível). Logo, o intervalo que satisfaz a inequação em questão é:

]-\infty;-4[ e ]-3;+\infty[

12x+6>1
Observemos que, como não é do segundo grau, torna-se mais simples de resolver, bastando apenas:

12x+6>1 \Rightarrow 12x+5>0 \Rightarrow 12x>-5 \Rightarrow x > \frac{-5}{12}\approx -0.41

Note que -0.41>-3>-4.

Então, o intervalo que satisfaz a inequação em questão é:

]-\frac{5}{12};+\infty[

Agora que já temos os intervalos nos quais os valores de x satisfazem as inequações, então:

(Como queremos detA>0 E detB>1....)

{x\in\Re/x>\frac{-5}{12}}.

Este é o resultado.... Se quiser perguntar sobre alguma passagem que talvez não tenha entendido ou quiser mostrar algum erro.... Espero ter ajudado. :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Ufop-MG - 2008 _Matrizes

Mensagempor Debylow » Sáb Out 19, 2013 13:54

Mto obrigado mesmo cara, entendi tudo vlw :-D
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D