• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Problema envolvendo determinante]

[Problema envolvendo determinante]

Mensagempor DPassos » Ter Set 03, 2013 12:32

Estudei esse problema de determinante várias vezes pra ver se conseguia montar a matriz, porém não entendi os três tópicos que aparecem no enunciado, não entendi qual pode ser a região i e j, a questão de atribuição de valor 1 e 0, principalmente o zero, pois para mim todas as torres transmitem. E não entendi a lógica do último tópico quando diz que: uma torre não transmite sinal para ela mesma. Não posso nem falar muito das minhas tentativas de resolução, pois o máximo que entendi é que a matriz tem que ser quadrada - para encontrar determinante - Também gostaria de saber se o determinante encontrado tem que ser elevado ao quadrado?

O enunciado é o seguinte:

O esquema abaixo apresenta três torres repetidoras de telefonia celular que permitem a comunicação entre as regiões R1, R2 e R3. O sentido de cada seta indica que a torre de uma região transmite sinal para outra.



Seja A=(aij) a matriz que descreve as transmissões de sinais apresentadas no esquema, sendo que:

* aij=1 significa que há transmissão de sinal da torre repetidora da região i para torre repetidora da região j
* aij=0 significa que não há transmissão de sinal da torre repetidora da região i para a torre repetidora da região j
* Considere que uma torre repetidora não transmite sinal para ela mesma.

A partir dessas informações, o valor do determinante da matriz A^2 é:

Observação: caso a imagem da representação das torres na apareça no anexo que coloquei, fica aqui uma descrição da imagem: São três círculos (representação das torres), a disposição dos círculos forma um triângulo. Do círculo R1 sai um seta apontando para R2, do R1 uma apontando para o R3, do R3 uma apontando para R2, do R2 uma apontando para R1 e do R3 uma apontando para R1. a disposição dos círculos é esta:

R1 R2

R3
Anexos
Torres.jpg
Torres.jpg (13.26 KiB) Exibido 7988 vezes
DPassos
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Set 03, 2013 11:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: biologia
Andamento: cursando

Re: [Problema envolvendo determinante]

Mensagempor temujin » Ter Set 03, 2013 14:07

Olá.

Uma matriz A=(aij) é um arranjo onde vc tem i linhas e j colunas. Monte sua matriz de modo que vc tenha como linhas R1, R2 e R3 e como colunas tb R1, R2 e R3:

Imagem

O que o seu enunciado diz é que se a torre i transmite para a torre j, o valor de aij é 1. Se não transmite é 0. Ainda, nenhuma torre transmite para ela mesma, logo se i=j, então aij=0. Ou seja, na diagonal principal, Ri=Rj vc já sabe que terá 0 em cada entrada.

Agora, olhando para o seu desenho, vc vê que R3 transmite para R2, mas R2 não transmite para R3. Logo, vc terá que a23 = 0 e a32=1 ou que a23=1 e a32=0 (não importa qual, desde que aij=0 implique aji=1). Portanto, a sua matriz ficará:

Imagem

Basta agora calcular o determinante da matriz A. Como ele pede o det(A^2), lembre-se que pelo teorema de Binet det(AB)=det(A).det(B), portanto det(A^2)=det(A).det(A)
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Problema envolvendo determinante]

Mensagempor tatobonito » Dom Fev 28, 2016 22:44

.
tatobonito
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Fev 28, 2016 22:40
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.