• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Problema envolvendo determinante]

[Problema envolvendo determinante]

Mensagempor DPassos » Ter Set 03, 2013 12:32

Estudei esse problema de determinante várias vezes pra ver se conseguia montar a matriz, porém não entendi os três tópicos que aparecem no enunciado, não entendi qual pode ser a região i e j, a questão de atribuição de valor 1 e 0, principalmente o zero, pois para mim todas as torres transmitem. E não entendi a lógica do último tópico quando diz que: uma torre não transmite sinal para ela mesma. Não posso nem falar muito das minhas tentativas de resolução, pois o máximo que entendi é que a matriz tem que ser quadrada - para encontrar determinante - Também gostaria de saber se o determinante encontrado tem que ser elevado ao quadrado?

O enunciado é o seguinte:

O esquema abaixo apresenta três torres repetidoras de telefonia celular que permitem a comunicação entre as regiões R1, R2 e R3. O sentido de cada seta indica que a torre de uma região transmite sinal para outra.



Seja A=(aij) a matriz que descreve as transmissões de sinais apresentadas no esquema, sendo que:

* aij=1 significa que há transmissão de sinal da torre repetidora da região i para torre repetidora da região j
* aij=0 significa que não há transmissão de sinal da torre repetidora da região i para a torre repetidora da região j
* Considere que uma torre repetidora não transmite sinal para ela mesma.

A partir dessas informações, o valor do determinante da matriz A^2 é:

Observação: caso a imagem da representação das torres na apareça no anexo que coloquei, fica aqui uma descrição da imagem: São três círculos (representação das torres), a disposição dos círculos forma um triângulo. Do círculo R1 sai um seta apontando para R2, do R1 uma apontando para o R3, do R3 uma apontando para R2, do R2 uma apontando para R1 e do R3 uma apontando para R1. a disposição dos círculos é esta:

R1 R2

R3
Anexos
Torres.jpg
Torres.jpg (13.26 KiB) Exibido 4935 vezes
DPassos
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Set 03, 2013 11:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: biologia
Andamento: cursando

Re: [Problema envolvendo determinante]

Mensagempor temujin » Ter Set 03, 2013 14:07

Olá.

Uma matriz A=(aij) é um arranjo onde vc tem i linhas e j colunas. Monte sua matriz de modo que vc tenha como linhas R1, R2 e R3 e como colunas tb R1, R2 e R3:

Imagem

O que o seu enunciado diz é que se a torre i transmite para a torre j, o valor de aij é 1. Se não transmite é 0. Ainda, nenhuma torre transmite para ela mesma, logo se i=j, então aij=0. Ou seja, na diagonal principal, Ri=Rj vc já sabe que terá 0 em cada entrada.

Agora, olhando para o seu desenho, vc vê que R3 transmite para R2, mas R2 não transmite para R3. Logo, vc terá que a23 = 0 e a32=1 ou que a23=1 e a32=0 (não importa qual, desde que aij=0 implique aji=1). Portanto, a sua matriz ficará:

Imagem

Basta agora calcular o determinante da matriz A. Como ele pede o det(A^2), lembre-se que pelo teorema de Binet det(AB)=det(A).det(B), portanto det(A^2)=det(A).det(A)
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Problema envolvendo determinante]

Mensagempor tatobonito » Dom Fev 28, 2016 22:44

.
tatobonito
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Fev 28, 2016 22:40
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.