• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Valor determinante desta Matriz ?

Valor determinante desta Matriz ?

Mensagempor marquesjadson » Seg Fev 18, 2013 17:51

o determinante da matriz inversa \begin{bmatrix}
 1 & 1 & 1 \\ 
  1& x+1 & 2 \\ 
  1& 1 & x-3
\end{bmatrix} é -1/4, sendo assim encontre o valor de X ?

Alguém poderia resolver e me explicar como chegou ao resultado, pois já tentei de várias formas e não consigo entender!
marquesjadson
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Fev 16, 2013 01:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: 2
Andamento: cursando

Re: Valor determinante desta Matriz ?

Mensagempor Cleyson007 » Seg Fev 18, 2013 21:02

Boa noite Marques!

1°) Primeiro calcule a matriz inversa (pesquise sobre determinante de matriz 3x3).

2°) Com a matriz inversa em mãos, calcule o seu determinante (pesquise sobre o determinante de uma matriz 3x3) --> Lembrando que o determinante deve ser igualado com -1/4.

3°) Siga o procedimento usual para o calculo de determinantes 3x3, e encontre o valor de x.

Bons estudos :y:

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.